Specification for CRA Line Pipe

API SPECIFICATION 5LC THIRD EDITION, JULY 1998

EFFECTIVE DATE: DECEMBER 31, 1998

Helping You Get The Job Done Right.™

Specification for CRA Line Pipe

Exploration and Production Department

API SPECIFICATION 5LC THIRD EDITION, JULY 1998

EFFECTIVE DATE: DECEMBER 31, 1998

Helping You Get The Job Done Right.^M

SPECIAL NOTES

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations under local, state, or federal laws.

Information concerning safety and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety data sheet.

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. Sometimes a one-time extension of up to two years will be added to this review cycle. This publication will no longer be in effect five years after its publication date as an operative API standard or, where an extension has been granted, upon republication. Status of the publication can be ascertained from the API Exploration and Production Department [telephone (202) 682-8000]. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this standard or comments and questions concerning the procedures under which this standard was developed should be directed in writing to the director of the Exploration and Production Department (shown on the title page of this document), American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

API standards are published to facilitate the broad availability of proven, sound engineering and operating practices. These standards are not intended to obviate the need for applying sound engineering judgment regarding when and where these standards should be utilized. The formulation and publication of API standards is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 1998 American Petroleum Institute

FOREWORD

This edition of Spec 5LC supersedes the second edition and includes items approved by letter ballot through December 1997.

Attention Users: Portions of this publication have been changed from the previous edition. The locations of changes have been marked with a bar in the margin, as shown to the left of this paragraph. In some cases the changes are significant. while in other cases the changes reflect minor editorial adjustments. The bar notations in the margins are provided as an aid to users as to those parts of this publication that have been changed from the previous edition, but API makes no warranty as to the accuracy of such bar notations.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal, state, or municipal regulation with which this publication may conflict.

Suggested revisions are invited and should be submitted to the director of the Exploration and Production Department, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.

SUGGESTIONS FOR ORDERING API CRA LINE PIPE

In placing orders for line pipe to be manufactured in accordance with API Spec 5LC, the purchaser should specify the following on the purchase order:

Specification	API Spec 5LC
Quantity	
Grade	Tables 4 and 6
Type of Pipe	Par. 4.1.c
Size	
Nominal Diameter:	
Standard-Weight Plain-End Pipe	Table 8
Extra-Strong Plain-End Pipe	Table 8
Double-Extra-Strong Plain-End Pipe	Table 8
Outside Diameter:	
Regular-Weight Plain-End Pipe	Table 8
Special Plain-End Pipe	Table 8
Weight Per Foot or Wall Thickness	Table 8
Nominal Length	Par. 10.5
End Finish	
Delivery Date and Shipping Instructions	

The purchaser should also state on the purchase order his requirements concerning the following stipulations, which are optional with the purchaser:

Certificate of Compliance	Par. 1.5
Chemical Analysis Test Reports	
Acceptance and Maximum Allowable Percent of Jointers	
Alternative Bevel, Plain-End Pipe in Sizes	
2 ³ / ₈ in. O.D. and larger	Par. 10.8
Defect Repair Procedures	
Markings in Metric Units	Par. 13.1.b
Purchaser Inspection	Appendix F
Monogram Marking ¹	Appendix G, Par. G.1

Attention is called to the following stipulations which are subject to agreement between the purchaser and the manufacturer:

Chemical Composition	Par. 6.1
Intermediate Grades	Par. 7.1., Table B.1
Flattening Test Orientation	Par. 7.10
Intermediate Diameters	Par. 10.2
Intermediate Wall Thickness	Par. 10.3
Supplementary Requirements	Appendix D
Supplementary Hydrostatic Test	Par. 9.4
Hydrostatic Test Pressure	Par. 9.3
Lengths Applied to Carloads	Table 10
Nonstandard Length and Length Tolerances	Par. 10.5
Repair of Welds of Electric-Welded Pipe	Par. 12.7.b
Marking Requirements	Par. 13.1, 13.4, 13.5

Special Note:

Nothing in this specification should be interpreted as indicating a preference by the committee for any material or process or as indicating equality between the various materials or processes. In the selection of materials and processes, the purchaser must be guided by his experience and by the service for which the pipe is intended.

¹Users of this specification should note that there is no longer a requirement for marking a product with the API monogram. The American Petroleum Institute continues to license use of the monogram on products covered by this specification but it is administered by the staff of the Institute separately from the specification. The policy describing licensing and use of the monogram is contained in Appendix G. No other use of the monogram is permitted. Nonlicensees may mark products in conformance with Section 13 and Licensees may mark products in conformance with Appendix G or Section 13.

CONTENTS

		Р	age
1	SCOP 1.1 1.2 1.3 1.4	PE Coverage Metric Units Measuring Devices Special Processes	1 1 1
	1.5	Certification	2
2	REFE 2.1 2.2 2.3 2.4	CRENCED STANDARDS General Requirements Equivalent Standards Referenced Standards	2 2 2
3	DEFI	NITIONS AND TERMS	2
4	MISC	ELLANEOUS—RETENTION OF RECORDS	3
5	PROC 5.1 5.2 5.3 5.4	CESS OF MANUFACTURE AND MATERIAL Process of Manufacture Cold Expansion Heat Treatment Traceability	3 4 4
6	CHEN 6.1 6.2 6.3 6.4 6.5 6.6	MICAL PROPERTIES AND TESTS. Composition . Heat Analyses . Product Analyses . Recheck Analyses . Control Analyses . Chemical Analyses Procedures .	4 5 5 5 5
7	MECI 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16	HANICAL PROPERTIES AND TESTS. Mechanical Properties Tensile Tests General. Tensile Tests Longitudinal Tensile Tests Transverse Tensile Tests Weld Tensile Tests Control Tensile Tests Control Tensile Tests Defective Specimens Flattening Tests Electric-Weld Acceptable Criteria Retests. Flattening Tests Seamless, Centrifugally-Cast, and Welded Without Filler Metal Weld With Filler Metal Manipulation Tests I Guided-Bend Test	5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Page

	7.17	Weld Ductility Test for Electric-Welded Pipe 12	
	7.18	Retests	
	7.19	Centrifugally-Cast Homogeneity Test 15	5
	7.20	Hardness Tests	
8	SPEC	IAL TESTS	5
	8.1	Ferrite/Austenite Ratio for Duplex Stainless Steel	
	8.2	Intergranular Corrosion Test	
	0.2		, ,
9	HYDF	ROSTATIC TESTS	7
-	9.1	Inspection Hydrostatic Test	
	9.2	Verification of Test	
	9.3	Test Pressures	
	9.4	Supplementary Hydrostatic Tests	
	9.4		'
10	DIME	ENSIONS, WEIGHTS, AND LENGTHS	5
10	10.1	Dimensions and Weights	
	10.1	Diameter	
	10.2	Wall Thickness 25	
	10.4	Weight	
	10.5	Length	
	10.6	Straightness	
	10.7	Jointers	
	10.8	Pipe Ends	5
1.1			_
11		DESTRUCTIVE INSPECTION	
	11.1	Inspection Methods for Welded Pipe	
	11.2	Inspection Methods for Seamless Pipe 27	
	11.3	Inspection Methods for Centrifugally-Cast Pipe	
	11.4	Radiological Inspection-Equipment	
	11.5	Fluoroscopic Operator Qualification	
	11.6	Operator Certification	
	11.7	Reference Standard	3
	11.8	ISO Wire Penetrameter	3
	11.9	Frequency	3
	11.10	Procedure for Evaluating In-Motion Operation of the Fluoroscope)
	11.11	Acceptance Limits)
		Imperfections	
		Defects	
		Weld Repair	
		Ultrasonic and Electromagnetic Inspection of Welded Pipe	
		Ultrasonic and Electromagnetic Inspection of Vended Liper	
		Ultrasonic Inspection of Centrifugally-Cast Pipe	
	11.17		-
12	WOR	KMANSHIP, VISUAL INSPECTION, AND REPAIR OF DEFECTS 33	3
	12.1	Inspection Notice	
	12.2	Purchaser Inspection	
	12.2	Workmanship	
	12.3	Visual Inspection	
	12.4	Defects	
	12.5		
		Repair of Defects	
	12.7	Procedure for Repair of Weld Seams of Submerged-Arc Welded Pipe 35	,

Page

		Procedure for Repair of Weld Seams of Electric-Weld and Induction-Welded Pipe				
		Procedure for Repair of Weld Seam of Gas Metal-Arc Welded Pipe				
13	MARK	ING AND SURFACE TREATMENT				
		Marking—General				
		Location of Markings				
	13.3 Sequence of Markings					
	13.4 Length					
		Die Stamping				
		Surface Treatment				
		Pipe Processor Markings				
	15.7	Pipe Processor Markings				
APP	ENDIX	X A REPAIR WELDING PROCEDURE				
APP	ENDIX	X BMINIMUM ELONGATION VALUES.45				
APP	ENDIX	C METRIC TABLES				
APP	ENDIX					
APP	ENDIX					
APP	ENDIX	X FPURCHASER INSPECTION67				
APP	ENDIX					
Figu						
1		entation of Tensile Test Specimens				
2		sile Test Specimens				
3		ttening Tests				
4		Guided-Bend Test Specimen				
5		Jig for Guided-Bend Test 14				
6		Through-Wall Hardness Test Locations 15				
7		Determination of Through-Wall Ferrite/Austenite Ratio				
8		Examples of Maximum Distribution Patterns of Indicated Elongated				
		Slag-Inclusion-Type Discontinuities				
9		amples of Maximum Distribution Patterns of Indicated Circular				
		g-Inclusion and Gas-Pocket-Type Discontinuities				
10		Ference Standards 32				
1		Reference Standard 33				
		Transverse Tensile Test Specimen				
		Tensile-Elongation Test Specimen				
		Guided-Bend Test Specimen				
	-	for Guided-Bend Test				
А	5 Nic	k-Break Test Specimen				
Table	es					
1	Ret	ention of Records				
2	Pip	e Manufacturing Processes				
3		Permissible Variation for Product Analyses of CRA Line Pipe				
4		emical Requirements for Heat Analyses, Percent				
5		ttening Retests				
6		sile Requirements				
7		quency of Tensile Testing				
8		in-End Line Pipe Dimensions, Weights, and Test Pressures				
9		erance on Dimensions and Weights				
10		erances on Lengths				

Page

11	ISO Wire Penetrameter
12	Elongated Slag-Inclusion-Type Discontinuities
13	Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities
14	Acceptance Limits
15	Applicable Repair Procedure
A-1	Guided-Bend Test Jig Dimensions
B-1	Minimum Elogation Values
C-1	Metric Dimensions, Weights, and Test Pressures
E-1	Guided-Bend Test Jig Dimensions

Specification for CRA Line Pipe

1 Scope

1.1 COVERAGE

This specification covers seamless, centrifugal cast, and welded alloy line pipe with improved corrosion resistant properties. The primary product is beveled pipe. If plain-end square cut or other special end preparation is desired, this shall be subject to agreement between the purchaser and manufacturer. Included are NPS: 1 in. through 42 in.

Grades covered by this specification are:

LC30-1812 LC52-1200 LC65-2205 LC65-2506 LC30-2242

a. This specification is under the jurisdiction of the Committee on Standardization of Tubular Goods.

b. The purpose of this specification is to provide standards for pipe with improved corrosion resistance suitable for use in conveying gas, water, and oil in both the oil and natural gas industries.

c. Although the plain-end line pipe meeting this specification is primarily intended for field makeup by circumferential welding, the manufacturer will not assume responsibility for field welding.

d. The size designations are nominal pipe sizes. In the text paragraphs herein, where pipe size limits (or size ranges) are given, these are outside-diameter sizes except where stated to be nominal. These outside-diameter size limits and ranges apply also to the corresponding nominal sizes.

1.2 METRIC UNITS

Metric units in this specification are shown in italic type in parentheses in the text and in many tables. Outside diameters air wall thicknesses are converted from inch dimensions. The converted diameters are rounded to the nearest 0.1 mm for diameters less than 18 in. and to the nearest 1.0 mm for diameters 18 in. and larger. Wall thicknesses are rounded to the nearest 0.1 mm.

Metric inside diameters are calculated from the metric outside diameters and wall thicknesses and rounded to the nearest 0.1 mm.

Metric plain-end weights are included from the metric outside diameters and wall thicknesses using the formula in 10.1 and rounded to the nearest 0.01 kg/M.

Metric hydrostatic pressures are calculated from metric outside diameters and wall thicknesses and metric fiber stresses shown in Sect. 9. The factors used where conversions are appropriate are as follows.

1 inch (in.)	= 25.4 millimeters (mm) exactly.
1 square inch	= 645.16 square millimeters (mm ²)
	exactly.
1 foot (ft)	= 0.3048 meters (m) exactly.
1 pound (lb)	= 0.45359 kilograms (kg).
1 pound per foot (lb/ft)	= 1.4882 kilograms per meter
	(kg/m).
1 pound per square inch (psi)	= 6.895 megapascals (MPa)
	for pressure.
	= .006895 megapascals (MPa)
	for stress.
1 foot-pound (ft-lb.)	= 1.3558 Joules (J) for impact energy.

The following formula was used to convert degrees Fahrenheit (°F) to degrees Celsius (°C):

$$^{\circ}C = \frac{5}{9} (^{\circ}F - 32).$$

1.3 MEASURING DEVICES

If test or measuring equipment, whose calibration or verification is required under the provisions of the specification, is subjected to unusual questionable, recalibration or reverification shall be performed before further use of the equipment.

1.4 SPECIAL PROCESSES

Special processes are the final operations which are performed during pipe manufacturing that affect attribute compliance required in this document (except chemistry and dimensions). The applicable special processes are:

Manufacturing Condition: Seamless	Special Processes
As-rolled (non-expanded)	Final reheating and hot sizing or stretch reduction. Cold finishing if applied and repair welding. Nonde- structive inspection.
As-rolled (expanded)	Expansion, repair welding. Nonde- structive inspection.
Heat-treated	Heat treatment, repair welding. Nondestructive inspection.
Manufacturing Condition: Centrifugally Cast	Special Processes
As-cast (non-expanded)	Final reheating and hot sizing or stretch reduction. Cold finishing if applied and repair welding. Nonde- structive inspection.
As-cast (expanded)	Expansion, repair welding. Nonde- structive inspection.
Heat-treated	Heat-treatment, repair welding. Nondestructive inspection.

Manufacturing Condition: Welded Without Filler Metal	Special Processes
As-rolled (non-expanded)	Seam welding and sizing, if applica- ble, seam heat-treatment, repair welding. Nondestructive inspection.
As-rolled (expanded)	Expansion and seam welding. If applicable, seam heat-treatment, repair welding. Nondestructive inspection.
Heat-treated	Seam welding and full-body heat- treatment. If applicable, repair weld- ing. Nondestructive inspection.
Manufacturing Condition: Welded Without Filler Metal	Special Processes
As-rolled (non-expanded)	Pipe forming, seam welding and repair welding. Nondestructive inspection.
As-rolled (expanded)	Expansion and seam welding and repair welding. Nondestructive inspection.
Heat-treated	Seam welding, repair welding, and full-body heat-treatment. Nonde-structive inspection.
As-rolled	Seam welding and sizing. Nonde- structive inspection.

1.5 CERTIFICATION

The manufacturer shall, upon request by the purchaser, furnish to the purchaser a certificate of compliance stating that the material has been manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements.

Where additional information is required, including the results of mechanical testing, SR15 (Appendix D) shall be specified on the purchase order.

A Material Test Report, Certificate of Compliance or similar document printed from or used in electronic form from an electronic data interchange (EDI) transmission shall be regarded as having the same validity as a counterpart printed in the certifier's facility. The content of the EDI transmitted document must meet the requirements of this specification and conform to any existing EDI agreement between the purchaser and the supplier.

2 Referenced Standards

2.1 GENERAL

This specification includes by reference, either in total or in part, other API, industry, and government standards listed in 2.4.

2.2 REQUIREMENTS

Requirements of other standards included by reference in this specification are essential to the safety and interchangeability of the equipment produced.

2.3 EQUIVALENT STANDARDS

Other nationally or internationally recognized standards shall be submitted to and approved by API for inclusion in this specification prior to their use as equivalent standards.

2.4 REFERENCED STANDARDS

The most recent editions of the following standards contain provisions that, through reference in this text, constitute a part of this standard.

API

Std 1104	Standard for Welding Pipelines and Related Facilities
Spec Q1	Specification for Quality Programs
ASME ²	
	Boiler and Pressure Vessel Code, Section IX
ASTM ³	
A262	Standard Practices for Detecting Suscepti- bility to Intergranular Attack in Austenitic Stainless Steels, Practice E.
A370	Methods and Definitions for Mechanical Testing of Steel Products, Annex II—Steel Tubular Products
A751	Methods, Practices and Definitions for Chemical Analysis of Steel Products
E4	Practices for Load Verification of Testing Products
E10	Standard Method of Test for Brinell Hard- ness of Metallic Materials
E18	Standard Methods of Tests for Rockwell Hardness and Rockwell Superficial Hard- ness of Metallic Materials
E83	Method of Verification and Classification of Extensioneters
E562	Practice for Determining Volume Fraction by Systematic Manual Point Count

3 Definitions and Terms

For the purposes of this specification the following terms and definitions apply:

3.1 heat: The metal produced by a single cycle of a batch melting process.

3.2 heat analysis: The chemical analysis representative of a heat as reported by the producer.

²American Society for Mechanical Engineering, 345 East 47th Street, New York, New York 10017.

³American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428.

3.3 inspection: The process of measuring, examining, testing, gaging, or otherwise comparing the unit of product with the applicable requirements.

3.4 inspection lot: A definite quantity of product manufactured under conditions that are considered uniform, for the attribute to be inspected.

3.5 inspection lot size: The number of units of product in an inspection lot.

3.6 inspection lot sample: One or more units of product selected from an inspection lot to represent that inspection lot.

3.7 manufacturer: Refers to the firm, company, or corporation responsible for marking the product to warrant that the product conforms to the specification. The manufacturer may be either a pipe mill or a processor, as applicable. This manufacturer is responsible for compliance with all of the applicable provisions of the specification.

3.8 may: May is used to indicate that a provision is optional.

3.9 pipe mill: A firm, company, or corporation that operates pipe-making facilities.

3.10 processor: A firm, company, or corporation that operates facilities capable of heat-treating pipe made by a pipe mill.

3.11 shall: Shall is used to indicate that a provision is mandatory.

3.12 should: Should is used to indicate that a provision is not mandatory, but recommended as good practice.

4 Miscellaneous—Retention of Records

Tests and inspections requiring retention of records in this specification are shown in Table 1. Such records shall be retained by the manufacturer and shall be made available to the purchaser upon request for a period of three years after the date of purchase from the manufacturer.

Table	1—Retention of Records	
10010		

Chemical Properties:	
Heat Analysis	Par. 6.2
Product Analysis	Par. 6.2
Mechanical Tests:	
Tensile Tests	Par. 7.2-7.5
Weld-Tensile Tests	Par. 7.6
Mill Control Tests	Par. 7.7
Guided-Bend Tests	Par. 7.15
Hydrostatic Tests:	
Tester Recorder Charts (where used)	Par. 9.2
Supplementary Hydrostatic Tests	Par. 9.4

Nondestructive Testing:	
Film (where used)	Par. 11.4
Fluoroscoptic	
Operator Qualifications	Par. 11.5
Repair Welding Procedure:	
Transverse Tensile Test	Par. A.2.2.2
Longitudinal Tensile-Elongation Test	Par. A.2.2.3
Transverse Guided-Bend Test	Par. A.2.2.4
Nick-Break Test	Par. A.2.2.5
Procedure Specification	Par. A.1
Procedure Qualification	Par. A.2
Personnel Performance Qualification	Par. A.3
Calibration Tests	Par. Various

5 Process of Manufacture and Material

5.1 PROCESS OF MANUFACTURE

Pipe furnished to this specification shall be seamless, welded, or centrifugally-cast as defined below. Welded pipe may be furnished in any combination of the listed welding processes, as agreed upon between the purchaser and manufacturer.

a. Seamless and Centrifugally-Cast.

1. Seamless is defined as wrought tubular product made without a welded seam. It is manufactured by hot working steel or, if necessary, by subsequently cold finishing the hot worked product.

2. Centrifugally-cast is defined as a casting technique in which the mold is rotated during solidification of the casting.

b. Welded Processes.

1. Without Filler Metal. Electric Weld (applicable to LC30-1512 and full-body heat-treated duplex alloys only). A process of forming a seam by electric-resistance welding, or induction welding wherein the edges to be welded are mechanically pressed together and the heat for welding is generated by the resistance-to-flow of electric current.

2. With Filler Metal

(a) Submerged-Arc Welding. A welding process that produces coalescence of metals by heating them with an arc or arcs between a bare metal electrode or electrodes and the work. The arc and molten metal are shielded by a blanket of granular, fusible material on the work. Pressure is not used, and the filler metal is obtained from the electrode.

(b) Gas Metal-Arc Welding. A welding process that produces coalescence of metals by heating them with an arc or arcs between a continuous filler metal electrode and the work. Shielding is obtained entirely from an externally supplied gas. Pressure is not used and filler metal is obtained from the electrode.

3. With or Without Filler Metal

(a) Plasma-Arc Welding. An arc welding process that produces coalescence of metals by, heating them with a constricted arc between the electrode and the workpiece (transferred arc) or the electrode and the constricting nozzle (non-transferred arc). Shielding is obtained from the hot, ionizing gas issuing from the torch which may be supplemented by an auxiliary source of shielding gas. Shielding gas may be an inert gas or a mixture of gases. Pressure may or may not be used and filler metal may or may not be supplied.

(b) Gas Tungsten-Arc Welding. An arc welding process that produces coalescence of metals by heating them with an arc between a tungsten electrode (nonconsumable) and the workpieces. Shielding is obtained from a gas. Pressure may or may not be used and filler metal may or may not be used.

c. Pipe-making Processes (See Table 2).

1. Seamless. Seamless pipe is produced by the seamless process defined above in 5.1.

2. Centrifugally-Cast. Centrifugally-cast pipe is produced by the centrifugal casting process defined above in 5.1.a.2. The entire inner surface of centrifugally-cast pipe shall be machined. The outer surface may be machined as well, when agreed upon between the purchaser and the manufacturer.

3. Electric-Weld. Electric-welded pipe is defined as having one longitudinal seam produced by the electric welding process as defined in 5.1.b.1.

4. Submerged-Arc. Submerged-arc welded pipe is defined is having one longitudinal seam produced by the automatic submerged-arc welding process as defined in 5.1.b.2.a above. At least one pass shall be on the inside and one pass on the outside. All end-welding of submerged-arc welded pipe, if not done by automatic submerged-arc welding, shall be done by a procedure and a Welder qualified in accordance with Appendix A of this specification.

Table	2—Pi	be Man	ufacturir	ng Pi	ocesses
-------	------	--------	-----------	-------	---------

-			
Manufacturing Process	No Seam	One Longitudinal Seam	Double Seam
1. Without Welds			
a. Seamless	Х		
b. Centrifugally-Cast	Х		
2. Welding Processes			
a. Without Filler Metal Electric-Weld		Х	
b. With Filler Metal			
1. Submerged-arc		Х	Х
2. Gas Metal-arc		Х	Х
c. With or Without Filler Metal			
1. Plasma-arc		Х	Х
2. Gas Tungsten-arc		Х	Х
3. Combination Welding		Х	Х

5. Gas Metal-Arc. Gas metal-arc welded pipe is defined as having one longitudinal seam produced by the continuous gas metal-arc welding process as defined in 5.1.b.2.b, above. At least one pass shall be on the inside and one pass on the outside.

6. Combination Welding. Combination welded pipe is defined as pipe having one longitudinal or double seam produced by a combination of welding processes defined in 5.1.b.2 and 5.1.b.3.

7. Double Seam. Double seam pipe is defined as pipe having two longitudinal seams formed by welding. The location of the seams shall be approximately 180° apart. All requirements specified for the welding process used shall be applicable to double seam pipe. All weld tests shall be performed after forming and welding.

d. Tack Welding. A tack weld is defined as a weld made to hold parts of a weldment in proper alignment until the final welds are made. Tack welds may be by any of the processes described in 5.1.b, above. They shall be removed by machining or remelted by subsequent arc welding. They are not subject to the subsequent weld requirements of this specification.

e. Jointer Weld. A jointer weld is a circumferential seam weld that joins two pieces of pipe together.

5.2 COLD EXPANSION

Cold expansion up to 1.5% for sizing shall be permitted if agreed upon between the purchaser and the manufacturer.

5.3 HEAT TREATMENT

Pipe furnished to this specification may be as-rolled, solution annealed⁴, except LC52-1200 which shall be quenched and tempered. Other appropriate heat treatment may be agreed upon between purchaser and manufacturer.

5.4 TRACEABILITY

The manufacturer shall establish and follow procedures for maintaining heat and/or lot identity until all required heat and/or lot tests are performed and conformance with specification requirements has been shown.

6 Chemical Properties and Tests

6.1 COMPOSITION

The composition of pipe furnished to this specification, as determined by heat analyses, shall conform to the chemical requirements specified in Table 4.

⁴Solution annealing involves treating at an appropriate temperature and cooling at an appropriate rate to minimize the precipitation of harmful carbides, as well as to secure softness and ductility. The rate of cooling determines the amount of carbides remaining in solution.

6.2 HEAT ANALYSES

When requested by the purchaser, the manufacturer shall furnish a report giving the heat analysis of each heat of material used in the manufacture of pipe furnished on the purchaser order. The analysis so determined shall conform to the requirements specified in 6.1.

If alloys other than those specified in Table 4 for a particular grade are added for other than deoxidation purposes, the heat analyses, including the alloy additions, shall be reported for each heat applied to the purchaser's order.

6.3 PRODUCT ANALYSES

One test from each of two lengths of pipe or plate or skelp from each lot size as indicated below shall be analyzed for product analyses by the manufacturer. The results of the analyses shall be available to the purchaser on request.

Grade	Size, in.	Lot Size	
All Grades	1 through 12 $^{3}/_{4}$	200 lengths or less	
	14 and over	100 lengths or less	

For multiple length seamless pipe, a length shall be considered as all of the sections cut from a particular multiple length. The samples shall be taken as follows:

a. Seamless Pipe. At the option of the manufacturer, samples used for product analyses shall be taken either from tensile test specimens or from the finished pipe.

b. Welded Pipe. At the option of the manufacturer, samples used for product analyses shall be taken from either finished pipe, plate, skelp, tensile test specimens, or flattening test specimens. The location of the samples shall be a minimum of 90° from the weld, of longitudinally-welded pipe.

For pipe manufactured from plate or skelp, the product analyses may be made by the supplier of the plate or skelp, providing the analyses are made in accordance with the frequency requirement stated above.

The composition so determined shall conform to the chemical requirements shown in Table 4 within the permissible variations for product analyses shown in Table 3.

6.4 RECHECK ANALYSES

If the product analyses of both lengths of pipe representing the lot fail to conform to the specified requirements, at the manufacturer's option, either the lot shall stand rejected or all the remaining lengths in the lot shall be tested individually for conformance to the specified requirements. If only one of the two samples fails, at the manufacturer's option, either the lot shall stand rejected or two recheck analyses shall be made on two additional lengths from the same lot. If both recheck analyses conform to the requirements, the lot shall be accepted except for the length represented by the initial analyses which failed. If one or both of the recheck analyses fail, at the manufacturer's option, the entire lot shall be rejected or each of the remaining lengths shall be tested individually. In the individual testing of the remaining lengths in any lot, analyses for only the rejecting element or elements need be determined. Samples for recheck analyses shall be taken in the same location as specified for product analysis samples.

6.5 CONTROL ANALYSES

A product analysis shall be made by the manufacturer, as a control, of each heat of steel used for the production of pipe under this specification. A record of such analyses shall be available to the purchaser.

6.6 CHEMICAL ANALYSES PROCEDURES

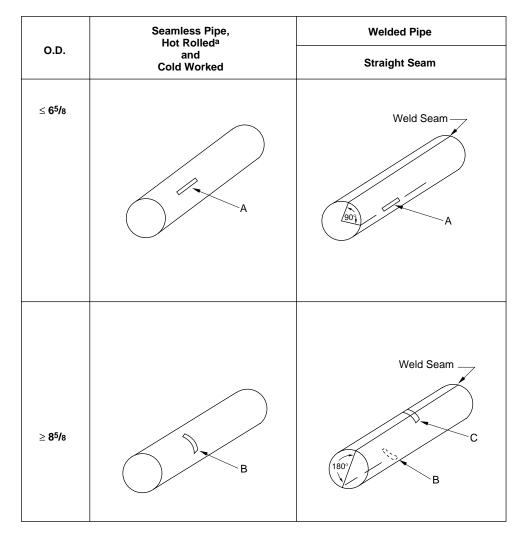
Methods of Analysis methods and practices relating to chemical analysis shall be performed in accordance with ASTM A751, *Standard Methods, Practices and Definitions for Chemical Analysis of Steel Products.* Calibrations performed shall be traceable to established standards.

7 Mechanical Properties and Tests

7.1 MECHANICAL PROPERTIES

All grades listed in this specification shall conform to the tensile requirements specified in Table 6. Other grades intermediate to the listed grades shall conform to the tensile requirements agreed upon between the purchaser and manufacturer, which shall be consistent with those specified in Table 6. The yield strength shall be the tensile stress required to produce a total elongation of 0.5% of the gage length as determined by an extensometer. When elongation is recorded or reported, the record or report shall show the nominal width of the test specimen when strip specimens are used, or state when full specimens are used.

7.2 TENSILE TESTS—GENERAL


Tensile test orientation shall be as shown in Fig. 1. At the option of the manufacturer, longitudinal specimens may be taken from the skelp parallel to the rolling direction and approximately midway between edge and center. Testing procedure shall conform to the requirements of the latest edition of ASTM 370. All tensile tests, except transverse weld and ring tests, shall include yield strength, ultimate tensile strength and elongation determinations, and shall be performed with the specimens at room temperature. The strain rate shall be in accordance with the requirements of the latest edition of ASTM A370. At the option of the manufacturer, the specimen may be either full section, strip specimen, or round-bar specimens per 7.4, 7.5, and Fig. 2. The type, size, and orientation of the specimens shall be reported. Strip specimens shall be

approximately $1^{1/2}$ in. (38.1 mm) wide in the gage length if suitable curved-face testing grips are used or if the ends of the specimens are machined to reduce the curvatures in the grip area. Otherwise, they shall be approximately 3/4 in. (19.0 mm) wide for pipe $3^{1/2}$ in. and smaller, approximately 1 in. (25.4 mm) wide for pipe 4 in. through $6^{5}/_{8}$ in., and approximately $1^{1/2}$ in. (38.1 mm) wide for pipe $8^{5}/_{8}$ in. and larger. Alternately, when grips with curved faces are not available, the ends of the specimens may be flattened without heating. All tensile tests shall be made in the delivery condition.

7.3 TENSILE TESTING

a. Frequency. Tensile tests shall be made at the frequency shown in Table 7.

b. Equipment. Tensile test machines shall have been calibrated within 15 months preceding any test in accordance with the procedures of ASTM E4. Extensometers shall be calibrated within 15 months preceding any test in accordance with the procedures of ASTM E83. Records retention shall be per Section 4.

- A = Strip Specimen (any circumferential location for seamless).
- B = Transverse Specimen (any circumferential location for seamless). For two-seam pipe the specimen shall be taken from a location midway between the welds.
- C = Transverse Weld Specimen.

^aFor hot-rolled seamless pipe, all tensile tests shall be obtained in the longitudinal direction, except when agreed upon between purchaser and manufacturer transverse tests may be specified for $8^{5}/_{8}$ in. and larger.

Figure 1—Orientation of Tensile Test Specimens

Element	Specified Limit of Element	Permissible Variation
Carbon		0.01
Manganese		0.04
Phosphorus		0.005
Sulfur		0.005
Silicon		0.05
Nickel	over 1.00 to 5.00, incl	0.07
	over 5.00 to 10.00, incl	0.10
	over 10.00 to 20.00, incl	0.15
	over 20.00 to 25.00, incl	0.20
	over 25.00 to 30.00, incl	0.25
	over 30.00 to 40.00, incl	0.30
	over 40.00 to 60.00, incl	0.35
Chromium	over 10.00 to 15.00, incl	0.15
	over 15.00 to 20.00, incl	0.20
	over 20.00 to 25.00, incl	0.25
	over 25.00 to 30.00, incl	0.30
Molybdenum	over 1.00 to 3.00, incl	0.05
	over 3.00 to 5.00, incl	0.10
	over 5.00 to 20.00, incl	0.15
Nitrogen	over 0.02 to 0.20, incl	0.01
	over 0.20 to 0.25, incl	0.02
	over 0.25 to 0.30, incl	0.03
Copper		0.05
Tungsten		0.04
Titanium		0.05

Table 3—Permissible Variation for Product Analyses of CRA Line Pipe

_

Note: These permissible variations shall be applied to under-minimum or overmaximum of specified limit of element.

1	2	3	4	5	6		7	:	8	9	9	1	0	1	1	1	2	13	14
	С	Mn	Р	S	Si	Ν	Ji	(Cr	Ν	lo	1	N	C	՝ս	Oth	ners	UNS ^b	Material
Grades ^{a,c}	Max	Max	Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Numbers	Classification
LC30-1812	0.030	2.00	0.040	0.030	0.75	10.0	15.0	16.0	18.0	2.0	3.0		0.16	_	_	_	_	S31603 or S31653	Austenitic Stainless
LC52-1200	0.08	1.00	0.040	0.030	0.75	—	0.5	11.5	13.5		—	—		—		—	—	S41008	Martensitic Stainless
LC65-2205	0.030	2.00	0.030	0.020	1.00	4.5	6.5	21.0	23.0	2.5	3.5	0.08	0.20	_	—	_	_	S31803	Duplex Stainless
																W			
LC65-2506	0.030	1.00	0.030	0.030	0.75	5.5	7.5	24.0	26.0	2.5	3.5	0.10	0.30	—	1.5	—	0.50	S31260	Duplex Stainless
																Ti			
LC30-2242	0.050	1.00	0.030	0.030	0.50	38.0	46.0	19.5	23.5	2.5	3.5	_	_	1.5	3.0	0.6	1.20	N08825	Ni Base Alloy

Table 4—Chemical Requirements for Heat Analyses, Percent

Notes

^aIf necessary, all grades may be modified or other grades may be specified by agreement between purchaser and manufacturer. In this case, the composition of the grade shall be designated with Cr and Ni content after the ksi value of yield strength as follows:

LC (YS ksi) – (Cr%)(Ni%)

^bUNS Numbers do not show exactly the same chemical compositions depicted in this table.

^cFor editorial purposes, the first four (4) alphanumerics of the grade designation are used to describe the grades in this document.

7.4 LONGITUDINAL TENSILE TESTS

At the option of the manufacturer, longitudinal tests may utilize a full section specimen (Fig. 2-B), a strip specimen (Fig. 2-C), or for pipe with wall thickness greater than 0.750 in., a 0.500 in. diameter round-bar specimen (Fig. 2-D). The trip specimen shall be tested without flattening.

7.5 TRANSVERSE TENSILE TESTS

The transverse tensile properties shall be determined, at the option of the manufacturer, by one of the following methods:

a. The yield strength, ultimate strength, and elongation values shall be determined on either a flattened rectangular specimen (Fig. 2-E), or a 0.500 in. or 0.350 in. specimen (Fig. 2-G).

b. The yield strength shall be determined by the ring expansion method (Fig. 2-A) with the ultimate strength and elongation values determined from a flattened rectangular specimen or round bar.

The same method for testing shall be employed for all lots on an order item. All transverse specimens shall be as shown in Fig. 2. All specimens shall represent the full wall thickness of the pipe from which the specimen was cut, except roundbar tensile specimens. Transverse round-bar specimens shall be secured from non-flattened pipe sections, and the largest possible diameter round bar shall be used. 0.500 in. diameter round-bar specimens shall be used when the pipe size allows, and the 0.350 in. diameter round-bar specimen shall be used for other sizes. For pipe sizes too small to allow a 0.350 in. specimen, round-bar tensile specimens may not be used.

7.6 WELD TENSILE TESTS

Weld tensile test specimens as specified in Table 7 shall be taken 90° to the weld with the weld at the center as shown in Fig. 1 and 2, and shall represent the full wall thickness of the pipe from which the specimen was cut. Weld reinforcement may be removed at the manufacturer's option. Weld tensile tests need not include determination of yield and elongation.

7.7 CONTROL TENSILE TESTS

One tensile test shall be made as a control for each heat of material used by the manufacturer for the production of pipe. A record of such tests shall be available to the purchaser. For welded pipe, these tensile tests shall be made on either the skelp or the finished pipe, at the option of the manufacturer.

7.8 RETESTS

If the tensile test specimen representing a lot of pipe failed to conform to the specified requirements, the manufacturer may elect to make retests on two additional lengths from the same lot. If both retest specimens conform to the requirements, all the lengths in the lot shall be accepted, except for the length from which the initial specimen was taken. If one or both of the retest specimens fail to conform to the specified requirements, the manufacturer may elect to test individually the remaining lengths in the lot. In this case, determinations are required only for the particular requirements with which the specimens failed to comply in the preceding tests. Specimens for retest shall be taken in the same manner as the specimen which failed to meet the minimum requirements.

7.9 DEFECTIVE SPECIMENS

If any tensile test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted. When the elongation is less than that specified, and if any part of the fracture is outside the middle third of the gage length as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

7.10 FLATTENING TESTS—ELECTRIC-WELD

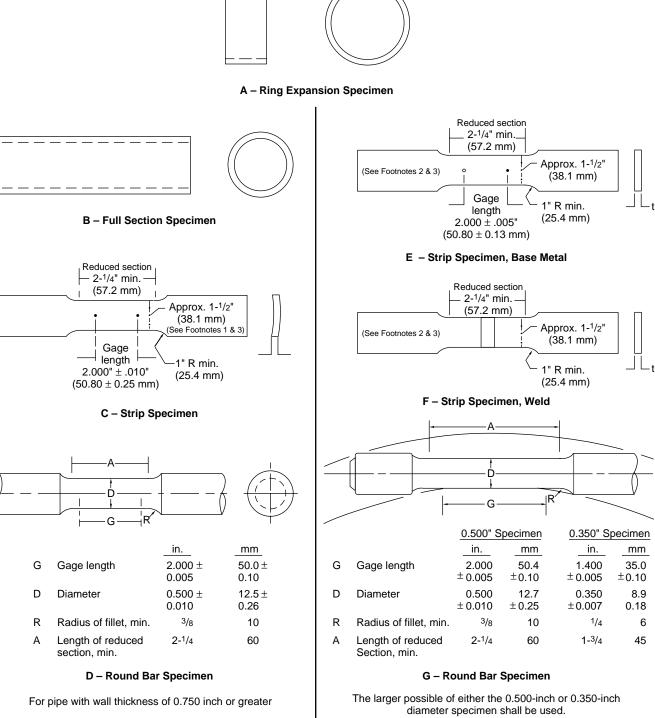
Flattening tests shall be performed for electric-weld pipe. Frequency of testing, sample location, and test orientation are shown in Fig. 3. When a weld-stop condition occurs during the production of a multiple length, flattening tests with the weld at 90° shall be made from the crop-ends resulting from each side of the weld-stop, and may be substituted for intermediate flattening tests.

Note: Flattening tests with the weld at the 0° orientation may be conducted at 180° and the 90° orientation at 270° upon agreement between the purchaser and manufacturer.

7.11 ACCEPTABLE CRITERIA

Acceptable criteria for flattening tests shall be as follows:

- a. Flatten to 2/3 original OD without the weld opening.
- b. Continue flattening to 1/3 original OD without cracks or breaks other than the weld.
- c. Continue flattening until opposite walls of the pipe meet.

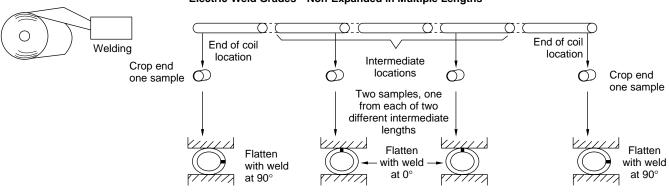

d. No evidence of lamination or burnt metal may develop during the entire test.

7.12 RETESTS

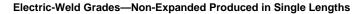
Flattening retest provisions shall be performed as shown in Table 5.

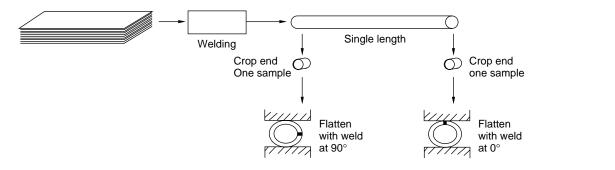
7.13 FLATTENING TESTS—SEAMLESS, CENTRIFUGALLY-CAST, AND WELDED WITHOUT FILLER METAL

Seamless, centrifugally-cast, and welded without filler metal pipe shall be tested by flattening, except that welded without filler metal pipe, with the exception of ERW, may be tested by the guided-bend test—in lieu of flattening—at the option of the manufacturer. A section of pipe not less than $2^{1}/_{2}$ in. (63.5 mm) in length shall be flattened cold between parallel


LONGITUDINAL SPECIMENS

Notes:


- 1. See 7.2 for gage width if testing is not done with properly curved grips.
- 2. Flattening of transverse and weld specimens shall be performed at room temperature.
- 3. Hot flattening, artificial aging, or heat-treatment of tensile specimens is not permitted.


Figure 2—Tensile Test Specimens

TRANSVERSE SPECIMENS

Electric-Weld Grades-Non-Expanded in Multiple Lengths

Electric-Weld Grades—Cold-Expanded

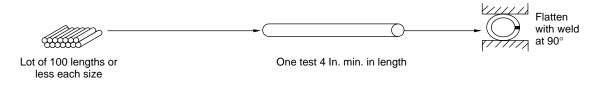


Figure 3—Flattening Tests

Table #	5—Flattening	Retests
---------	--------------	---------

Nonexpanded Electric Weld produced in single lengths.	Manufacturer may elect to retest any failed end until the requirements are met pro- viding the finished pipe is not less than 80% of its length after initial cropping.
Nonexpanded Electric Weld produced in multiple lengths.	Manufacturer may elect to retest each end of each individual length if any test fails. The retests for each end of each individual length shall be made with the weld alternately at 0° and 90° .
Cold-Expanded Electric Weld.	Manufacturer may elect to retest one end from each of two additional lengths of the same lot. If both retests are acceptable, all lengths in the lot shall be accepted, except the original failed length. If one or both retests fail, the manufacturer may elect to repeat the test on specimens cut from one end of each of the remaining individual lengths in the lot.

Note: For the purpose of mechanical testing the weld of electric-welded pipe of 2 in. nom. and larger, "the weld" extends to a distance of $\frac{1}{2}$ in. (12.7 mm) on either side of the fusion line. For pipe smaller than 2 in. nom., "the weld" extends to a distance of $\frac{1}{4}$ in. (6.35 mm) on either side of the fusion line.

plates in two steps. During the first step, which is a test for ductility, no cracks or breaks on the inside, outside, or end surfaces shall occur until the distance between the plates is less than the value of H, calculated as follows:

$$H = 1.09t/(.09 + t/D)$$

where

- H = distance between flattening plates, in. (mm),
- t = specified wall thickness in. (mm),
- *D* = specified or calculated (from the specified inside diameter and wall thickness outside diameter, in. (mm).

During the second step, which is a test for soundness, the flattening shall be continued until the specimen breaks or the opposite walls of the pipe meet.

a. Frequency of Test. One end of each pipe shall be tested for centrifugally-cast. For seamless and welded pipe without filler metal, except ERW, two tests per lot of 50 maximum.

b. Retest. Manufacturer may elect to retest any failed end until the requirements are met, providing that the finished pipe is not less than 80% of its length after initial cropping.

7.14 WELD WITH FILLER METAL MANIPULATION TESTS

Welds with filler metal and, at the option of the manufacturer, welds without filler metal shall be tested by the guidedbend test.

The specimens shall be taken from each weld in a length of pipe from each lot of 50 lengths or less of each size. The specimens shall not contain any repair welding made by the manual metallic-arc procedure.

7.15 GUIDED-BEND TEST

One face bend and one root bend specimen, both conforming to Fig. 4 shall be bent approximately 180° in a jig, substantially in accordance with Fig. 5. For any combination of diameter, wall thickness, and grade, the maximum value for jig Dimension "A" may be calculated by the formula. The manufacturer shall use a jig based on this dimension, or a smaller dimension at his option. However, to minimize the number of

Table	6-	-Tensile	Rec	uirements
-------	----	----------	-----	-----------

1	2		2 3		3	4	5	6
	Yield Stren	igth, Min. ^a	Ultimate Tensile	e Strength, Min.	Elongation,			
Grade	psi	MPa	psi	MPa	Min. ^c percent in 2"	UNS Numbers ^b	Max Hardness Rc	
LC30-1812	30,000	(207)	70,000	(482)	25	S31603 or S31653		
LC52-1200	52,000	(358)	66,000	(455)	20	S41008	22	
LC65-2205	65,000	(448)	90,000	(621)	25	S31803		
LC65-2506	65,000	(448)	95,000	(656)	25	S31260	—	
LC30-2242	30,000	(207)	80,000	(551)	30	N08825	—	

Notes:

^aWhen yield strength is changed by the modification of chemical composition or heat-treatment, a grade designation shall be changed with ksi value of yield strength.

^bUNS Numbers do not show the exact tensile requirements depicted in this table.

^cThe basic elongation shoe is for wall thicknesses 0.500 in. and greater for 1.5 in.-wide specimens. The following is for thinner wall thicknesses.

 $e = C \times A^{.2}$

where

- e = minimum elongation in 2 in. (to the nearest 0.5%),

Note: See Appendix B for minimum elongation values calculated from this equation.

1	2	3	4
Size, in.	Tensile Tests	Weld Tensile Tests	Control Tensile Tests
$\leq 5^{9}/_{16} \text{ OD}$	1 per 400 lengths		
$\geq 6^{5}/_{8}$ OD thru $12^{3}/_{4}$ OD	1 per 200 lengths		One per heat on
$> 12^{3}/_{4}$ OD	1 per 100 lengths per cold expansion amount ^b		all sizes
$8^{5}/_{8}$ OD thru $12^{3}/_{4}$ OD		1 per 200 lengths	
$> 12^{3}/_{4}$ OD		1 per 100 lengths per cold	
		expansion amount ^a	

Table 7—Frequency of Tensile Testing

^aEach weld for two-seam pipe.

^bPipe manufactured with the same amount of cold expansion, $\pm 0.2\%$, shall be considered to have the same cold expansion. Notes:

1. Heat-Treated Pipe—For heat-treated pipe, the sample frequency shown for each size shall apply to all pipe of the same heat and thickness heat-treated in one furnace charge. For pipe heat-treated in a continuous furnace, the sample frequency shown shall apply for all pipe of the same heat and thickness.

2. The size of the lot shown is maximum. For smaller lots than those shown, the frequency shall be as listed.

jigs required, standard values for Dimension "A" have been selected for pipe sizes $12^{1/4}$ in. and larger. These values are listed for each diameter, wall thickness, and grade in Appendix D. For intermediate grades or wall thicknesses, the next smaller standard value for Dimension "A" is greater than 9 in., the length of the specimen required to contact the male die need not exceed 9 in. For pipe with wall thickness over 0.750 in., a reduced wall specimen as shown in Fig. 4 may be used at the option of the manufacturer. Reduced wall specimens shall be tested in a jig with the "A" dimension calculated for 0.750 in. (19.1 mm) wall pipe of the appropriate size and grade. The specimens (a) shall not fracture completely, (b) shall not reveal any cracks or ruptures in the weld metal greater than $\frac{1}{8}$ in. (3.18 mm) in length regardless of depth, and (c) shall not reveal any cracks or ruptures in the parent metal, the heat-affected zone, the fusion line longer than 1/8 in. (3.18 mm) and deeper than $12^{1/2}$ percent of the specified wall thickness; except cracks which occur at the edges of the specimen and which are less than 1/4 in. (6.35 mm) long shall not be cause for rejection in (b) or (c) regardless of depth. If the fracture or crack in the specimen is caused by a defect or flaw, that specimen may be discarded and a new specimen substituted.

7.16 GUIDED-BEND TEST—RETESTS

If one or both of the guided-bend test specimens fail to conform to the specified requirements, the manufacturer may elect to repeat the tests on specimens cut from two additional lengths of pipe from the same lot. If such specimens conform to the specified requirements, all lengths in the lot shall be accepted, except the length initially selected for the test. If any of the retest specimens fail to pass the specified requirements, the manufacturer may elect to test specimens cut from the individual lengths remaining in the lot. The manufacturer may also elect to retest any length which has failed to pass the test by cropping back and cutting two additional specimens from the same end. If the requirements of the original test are set by both of these additional tests, that length shall be acceptable. No further cropping and retesting is permitted. Specimens for retests shall be taken in the same manner as specified in 7.15 and 7.16.

7.17 WELD DUCTILITY TEST FOR ELECTRIC-WELDED PIPE

The weld ductility shall be determined by tests on full-section specimens of 2 in. (50.8 mm) minimum length. The specimens shall be flattened cold between parallel plates. The weld shall be placed 90° from the direction of applied force (point of maximum bending). No cracks or breaks exceeding 1/8 in. (3.18 mm) in any direction in the weld or parent metal shall occur on the outside surface until the distance between the plates is less than the value of "S" calculated by the formulas (a) and (b) below:

(a) Grades less than 52 ksi Yield Strength

$$S = \frac{3.07t}{.07 + 3t/D}$$

(b) Grades 52 ksi Yield Strength and Higher

$$S = \frac{3.05t}{.05 + 3t/D}$$

where

S = distance between flattening plates. in. (mm),

t = specified wall thickness of the pipe, in. (mm),

D = specified outside diameter of the pipe, in. (mm).

Cracks which originate at the edge of the specimen and which are less than 1/4 in. (6.35 mm) long shall not be cause for rejection. One test shall be made on a length of pipe from each lot size as indicated below.

For multiple length pipe, a length shall be considered as each section cut from a particular multiple length. The weld ductility test may also serve as one of the flattening tests in 7.10 by compliance with the appropriate amounts of flattening.

7.18 RETESTS

Outside Diameter in.	Lot Size No. of Lengths
through 12 ³ / ₄	200 or less
14 and over	100 or less

If the weld ductility test specimen representing a lot of pipe fails to conform to any of the requirements of 7.17, the manufacturer may elect to make retests on two additional lengths from the same lot. If both retest specimens conform to the

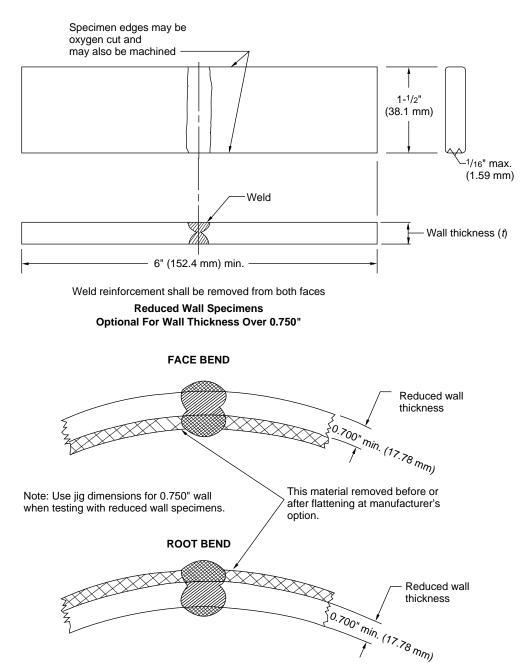


Figure 4—Guided-Bend Test Specimen

requirements, all the lengths in the lot shall be accepted, except for the length from which the initial specimen was taken. If one or both of the retest specimens fail to conform to the specified requirements, the manufacturer may elect to test specimens cut from one end of the individual lengths remaining in the lot. Precautions shall be taken so that the specimens can be identified with respect to the length of pipe from which they were cut. The manufacturer may also elect to retest any length which has failed to pass the above test procedure by cropping back and cutting two additional specimens from the same end. If the weld ductility test requirements are met by both of these additional tests, that length shall be acceptable. No further cropping and retesting is permitted.

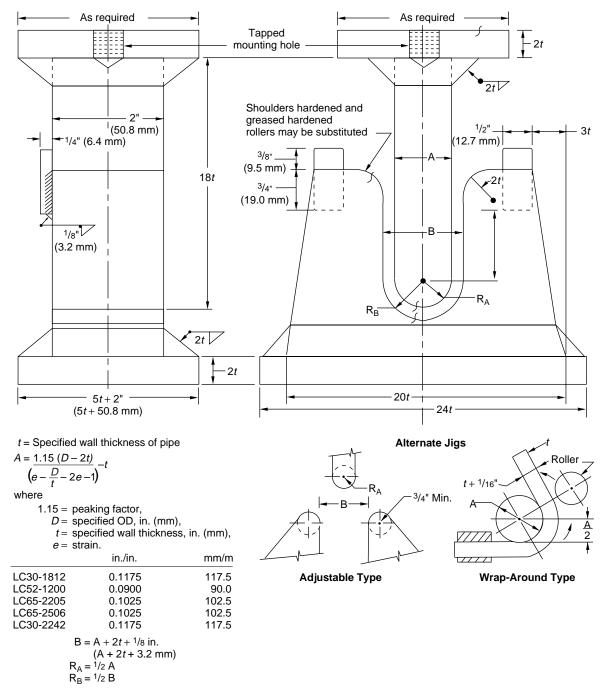


Figure 5—Jig for Guided-Bend Test

7.19 CENTRIFUGALLY-CAST HOMOGENEITY TEST

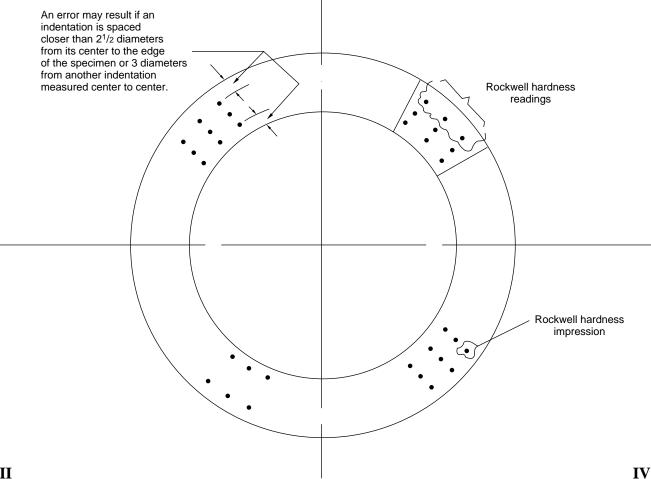
Centrifugally-cast pipe furnished to this specification shall be tested for hardness as follows:

a. Definitions:

Π

1. Impression. One HRC indentation (see Fig. 6). Although impressions below HRC 20 may not be precise, they may be used for the calculation of readings. Care should be exercised when evaluating those hardness values below HRC 20.

2. Reading. The average of three impressions in an arc parallel to the circumference of the pipe (see Fig. 6).


b. Hardness Requirements. Hardness tests shall be made in accordance with the latest edition of ASTM E18: Standard Methods of Tests for Rockwell Superficial Hardness for Metallic Materials.

Hardness readings are not taken into account. Only the difference between readings is to be measured. The difference in hardness readings in a quadrant on any test ring shall not exceed that specified below:

Nominal Wall Thickness Inches	Allowable Hardness Gradation, HRC
0.500 or less	3.0
0.501 to 0.749	4.0
0.750 to 0.999	5.0
1.000 and greater	6.0

c. Test Frequency. A test ring shall be cut from one end of each pipe. Approximately 50% of these test rings shall be cut from the front ends and approximately 50% from the back ends of the pipe. HRC impressions shall be made in one quadrant of each ring as shown in Fig. 6.

By agreement between the purchaser and the manufacturer, hardness test frequencies other than required above may be specified.

III

Figure 6—Through-Wall Hardness Test Locations

I

7.20 HARDNESS TESTS (LC52-1200)

Hardness readings (three impressions) shall be made in accordance with the latest editions of ASTM E18 and ASTM E10, as appropriate.

Conversions shall be made in accordance with the latest edition of ASTM A370. The use of the HRC scale is permissible at hardness levels of less than HRC 20. Although impressions below HRC 20 may not be precise, they may be used for the calculation of readings. Care should be exercised when evaluating those hardness levels below HRC 20.

Each tensile specimen required for Grade LC52-1200 in accordance with 7.3 shall be tested for hardness and shall comply with the requirements given in Table 6. For hardness readings of weld areas, a test specimen shall be taken adjacent to the Weld Tensile Test specimen specified in 7.6. This hardness test shall include both weld metal and heat affected zone (HAZ), and comply with the maximum reading shown in Table 6. By agreement between purchaser and manufacturer, additional hardness tests may be specified.

8 Special Tests

8.1 FERRITE/AUSTENITE RATIO FOR DUPLEX STAINLESS STEEL

Ferrite/austenite ratio for duplex stainless steel shall be within 0.35 to 0.65. This ratio shall be determined by using commercially available methods such as Ferrite. Indicator, microscopic point-count method, computerized structure analysis method, etc. In case of dispute, microscopic point-count method shall be used as the standard method (Reference ASTM E562).

Each tensile test specimen shall be tested to determine the ferrite/austenite ratio and shall comply with the requirement described above. For the ferrite/austenite ratio determination on the weld, a test specimen shall be taken adjacent to weld tensile test specimen as specified in 7.6. The ratio measured on this test specimen shall comply with the requirements described above.

The determination of ferrite/austenite ratio shall be conducted at nine (9) points for pipe body specimen and at oneto-three points, depending upon thickness, for the weld specimen as shown in Fig. 7. The average of three readings of the OD, centerline, and ID of the pipe body shall be within specified values. For the weld, each reading shall be within the specified values.

8.2 INTERGRANULAR CORROSION TEST (STRAUSS TEST)

The purpose of this test is to assure proper manufacturing procedures for austenitic steel (LC30-1812) and Ni-base

alloy (LC30-2242). It is not a test to determine susceptibility for use with a particular environment.

a. Summary of Test Procedure. A suitable sample embedded in copper shot or grindings is exposed to boiling acidified copper sulfate solution for 24 hours. After exposure in the boiling solution, the specimen is bent. The testing procedure shall conform to the requirement of the latest edition of ASTM A262, Practice E.

b. Specimen Sampling. One specimen of the base metal shall be taken from the pipe body. For welded pipe another specimen, containing the weld, shall also be taken from the seamwelded portion. The specimen axis may be either transverse or longitudinal to the pipe axis.

One test for each heat or each heat treatment lot shall be performed as described in the footnote to Table 7.

c. Specimen Preparation. The size of specimen shall be approximately 3 in. (76.2 mm) long and 1 in. (25.4 mm) wide. Detailed sampling condition may be specified in the agreement between the purchaser and the manufacturer. Sawing is preferred to shearing, but if sheared, the sheared edge of specimen shall be machined or ground off. The specimen shall be tested in the as-received condition except that it may be flattened, if desired. Any scale on the specimen shall be removed mechanically with 120 grit iron-free aluminum oxide abrasive. Alternatively, chemical removal of scale is permissible. Each specimen shall be degreased using acetone, alcohol, or a vapor degreaser prior to testing.

d. Test Condition. Test solution is made dissolving 100g of copper sulfate (CuSO₄ \cdot 5H₂O) in 700 ml of distilled water, adding 100 ml of sulfuric acid (H₂SO₄) and diluting to 1000 ml with distilled water. The volume of test solution shall be sufficient to completely immerse the specimens.

The test specimen shall be immersed in an ambient temperature test solution which is then brought to a boil and maintained at boiling for 24 hours. After 24-hour immersion, the test specimen shall be removed from the test solution. If adherent copper remains, it may be removed by a brief immersion in nitric acid at room temperature prior to bending.

e. Bend Test. For acceptance, the tested specimen shall be bent through 180° over a diameter equal to twice the thickness of the specimen. Bending axis shall be perpendicular to the direction of the test specimen. Unless otherwise specified, the bend test system shall be a root bend: i.e., the inside surface of the pipe shall be strained in tension. The wall thickness need not be greater than 3/8 in. (9.52 mm).

In case of material having low ductility, the maximum angle of bend without causing cracks in the material shall be determined by bending an untested specimen of the same configuration as the specimen to be tested.

For welded specimens, the fusion line shall be located approximately at the centerline of the bend.

f. Minimum Acceptance Criteria. The bent test specimen shall first be examined at low magnification. If the evaluation

is questionable, the specimen shall then be examined at a magnification of 100×. No cracking is permitted. An investigation to determine cause of failure is required; and agreement by the purchaser is required prior to any retest procedure.

9 Hydrostatic Tests

9.1 INSPECTION HYDROSTATIC TEST

Each length of pipe shall withstand, without leakage, an inspection hydrostatic test to at least the pressure specified in 9.3. Test pressures for all sizes of seamless pipe and for welded pipe in sizes 15 in. and smaller shall be held for not less than 5 sec. Test pressures for welded pipe in sizes 20 in. and larger shall be held for not less than 10 sec. The water used for hydrostatic testing shall contain less than 50 ppm chlorides.

9.2 VERIFICATION OF TEST

In order to ensure that every length of pipe is tested to the required test pressure, each tester shall be equipped with a recording device that will record the test pressure and duration of time applied to each length of pipe, or equipped with some positive and automatic or interlocking device to prevent pipe from being classified as tested until the test requirements (pressure and time) have been complied with. Such records or charts shall be available for examination at the manufacturer's facility by the purchaser's inspectors when the purchaser is so represented at the manufacturer's facility. The test pressure measuring device shall be calibrated by means of a dead weight tester, or equivalent, within four months prior to each use. Calibration records retention shall be per Section 4.

9.3 TEST PRESSURES

The minimum test pressure shall be the standard test pressure as listed in Table 8, or an intermediate or higher pressure at the discretion of the manufacturer unless specifically limited by the purchaser, or a higher pressure as agreed upon between the purchaser and manufacturer. The minimum test pressures for grades, diameters, and wall thicknesses not listed shall be computed by the formula given below. For all grades in all sizes smaller than $2^{3}/_{8}$ in., the test pressure has been arbitrarily assigned. Where the unlisted wall is intermediate to walls whose test pressure has been arbitrarily assigned, the test pressure for the intermediate wall shall be equal to the next heaviest wall. When computed pressures are not an exact multiple of 10 psi (100 kPa), they shall be rounded to the nearest 10 psi (100 kPa).

Note 1: The hydrostatic test pressures given herein are manufacturerinspection test pressures, are not intended as a basis for design, and do not necessarily have any direct relationship to working pressures.

Note 2: The test pressures given in Table 8 were computed by the following formula and rounded to the nearest 10 psi (100 kPa):

$$P = \frac{2000St}{D}$$

where

 $P = \frac{2St}{D}$

- P = Hydrostatic test pressure in pounds per sq. in. (kPa),
- S = Fiber stress in pounds per sq. in. (MPa), equal to a percentage of the specified minimum yield strength for the various sizes as shown below,
- t = specified wall thickness in inches (mm),
- D = specified outside diameter in inches (mm).

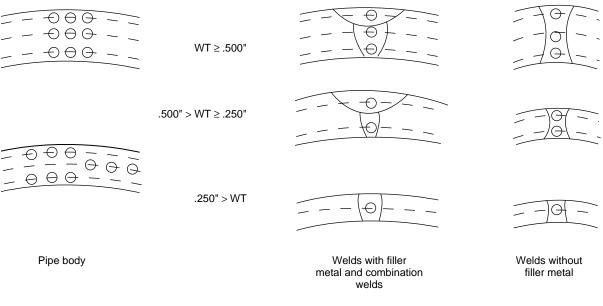
	Percent of S Minimum Yie	
Grade	Size	Standard Test Pressure
All Grades	$2^{3}/_{8}$ to $8^{5}/_{8}$ inclusive	75
All Grades	$10^{3}/_{4}$ to 18 inclusive	85
All Grades	20 and larger	90

^aTest pressures for other sizes established arbitrarily.

^bTest pressures were limited to 2500 psi (19300 kPa) for sizes larger than $3^{1}/_{2}$ in. Test pressures for other sizes established arbitrarily. ^cTest pressures for grade LC65, LC30 and LC52 were limited to 3000 psi (20700 kPa) to accommodate hydrostatic tester limitations.

Note 3: When hydrostatic testing in excess of 90% of specified minimum yield strength, using the above formula, the applied forces for end-sealing produce a compressive longitudinal stress which should be considered. Recognizing this phenomenon, the manufacturer should submit appropriate calculations for determining the test pressure.

9.4 SUPPLEMENTARY HYDROSTATIC TESTS


By agreement between the purchaser and the manufacturer, for Grades LC30, LC52, and LC65, the manufacturer shall make additional internal pressure tests which may involve one or more of the following methods. In all supplementary hydrostatic tests, the formula shown in 9.3 shall be used for stress calculations. The conditions of the test shall be as agreed upon.

a. Hydrostatic destructive tests in which the minimum length of the specimen is ten times the outside diameter of the pipe, but need not exceed 40 ft. (12.19 m).

b. Full-length destructive tests made by the "hydrostatic pressure water column" method.

c. Hydrostatic transverse yield strength tests using accurate strain gages.⁵

⁵Acceptable gages are the roller-chain ring-expansion gage, the SR-4 strain gage, or other suitable gages of similar accuracy.

Note: OD and ID readings shall be as close as practical to the OD or ID surface.

Figure 7—Determination of Through-Wall Ferrite/Austenite Ratio

Table 8—Plain-End Line Pipe Dimensions ^a , Weights ^b , and Test Pressu	ires
(See Appendix C for Metric Tables)	

	1		2	3	4	5	6	7
	Size:		Plain-End					
		Outside Diameter, in.	Weight, lb. per ft.	Wall Thickness, in.	Inside Diameter, in.	Test	Pressures psi,	min.
Nom. in.	Designation	D	w _{pe}	t t	d d	LC30	LC52	LC65
1	Std	1.315	1.68	0.133	1.049	700		1520
1	XS	1.315	2.17	0.179	0.957	850	—	1840
1	XXS	1.315	3.66	0.358	0.599	1000		2170
$1^{1}/_{4}$	Std	1.660	2.27	0.140	1.380	1200	_	2600
$1^{1}/_{4}$	XS	1.660	3.00	0.191	1.278	1800	_	3000
$1^{1}/_{4}$	XXS	1.660	5.21	0.382	0.896	2200		3000
$1^{1/2}$	Std	1.900	2.72	0.145	1.610	1200		2600
$1^{1/2}$	XS	1.900	3.63	0.200	1.500	1800	_	3000
$1^{1/2}$	XXS	1.900	6.41	0.400	1.100	2200	_	3000

^aOutside diameter and wall thickness dimensions shown are subject to tolerances. Inside diameters are nominal, and are given here for information. ^bWeights shown are for carbon steel. To obtain the weight for the alloy ordered use the appropriate correction factor from 10.1.

Size: Wall					Size:		Wall				
Outside Weight, Thick., Dia., in. lb/ft. in.	Inside Dia., in.	Test Pr	ressures ps	si, min.	Outside Dia., in.	Weight, lb/ft.	Thick., in.	Inside Dia., in.	Test Pr	ressures pa	si, min.
$D \qquad w_{pe} \qquad t$	d d	LC30	LC52	LC65	D 1111, 1111 D	w _{pe}	t	d	LC30	LC52	LC65
2.375 2.03 0.083	2.209	1570	2730	3000	3.5	3.03	0.083	3.334	1070	1850	2310
2.375 2.64 0.109	2.157	2070	3000	3000	3.5	3.95	0.109	3.282	1400	2430	3000
2.375 3.00 0.125	2.125	2370	3000	3000	3.5	4.51	0.125	3.250	1610	2790	3000
2.375 3.36 0.141	2.093	2670	3000	3000	3.5	5.06	0.141	3.218	1810	3000	3000
2.375 3.65 0.154	2.067	2920	3000	3000	3.5	5.57	0.156	3.188	2010	3000	3000
2.375 4.05 0.172	2.031	3000	3000	3000	3.5	6.11	0.172	3.156	2210	3000	3000
2.375 4.39 0.188	1.999	3000	3000	3000	3.5	6.65	0.188	3.124	2420	3000	3000
2.375 5.02 0.218	1.939	3000	3000	3000	3.5	7.58	0.216	3.068	2780	3000	3000
2.375 5.67 0.250	1.875	3000	3000	3000	3.5	8.68	0.250	3.000	3000	3000	3000
2.375 6.28 0.281	1.813	3000	3000	3000	3.5	9.66	0.281	2.938	3000	3000	3000
2.375 9.03 0.436	1.503	3000	3000	3000	3.5	10.25	0.300	2.900	3000	3000	3000
					3.5	18.58	0.600	2.300	3000	3000	3000
2.875 2.47 0.083	2.709	1300	2250	2810							
2.875 3.22 0.109	2.657	1710	2960	3000	4	3.47	0.083	3.834	930	1620	2020
2.875 3.67 0.125	2.625	1960	3000	3000	4	4.53	0.109	3.782	1230	2130	2660
2.875 4.12 0.141	2.593	2210	3000	3000	4	5.17	0.125	3.750	1410	2440	3000
2.875 4.53 0.156	2.563	2440	3000	3000	4	5.81	0.141	3.718	1590	2750	3000
2.875 4.97 0.172	2.531	2690	3000	3000	4	6.40	0.156	3.688	1760	3000	3000
2.875 5.40 0.188	2.499	2940	3000	3000	4	7.03	0.172	3.656	1940	3000	3000
2.875 5.79 0.203	2.469	3000	3000	3000	4	7.65	0.188	3.624	2120	3000	3000
2.875 6.13 0.216	2.443	3000	3000	3000	4	9.11	0.226	3.548	2540	3000	3000
2.875 7.01 0.250	2.375	3000	3000	3000	4	10.01	0.250	3.500	2810	3000	3000
2.875 7.66 0.276	2.323	3000	3000	3000	4	11.16	0.281	3.438	3000	3000	3000
2.875 13.69 0.552	1.771	3000	3000	3000	4	12.50	0.318	3.364	3000	3000	3000

Table 8—Plain-End Line Pipe Dimensions^a, Weights^b, and Test Pressures (Continued)(See Appendix C for Metric Tables)

Size: Outside		Wall Thick.,	Inside	Test Pr	essures p	osi, min.	Size: Outside		Wall Thick.,	Inside	Test Pr	ressures p	si, min
Dia., in. D	lb/ft. w _{pe}	in. <i>t</i>	Dia., in. <i>d</i>	LC30	LC52	LC65	Dia., in.	lb/ft. w _{pe}	in. <i>t</i>	Dia., in. <i>d</i>	LC30	LC52	LC65
4.5	3.92	0.083	4.334	830	1440	1800	6.625	36.39	0.562	5.501	3000	3000	3000
4.5	5.84	0.125	4.250	1250	2170	2710	6.625	40.05	0.625	5.375	3000	3000	3000
4.5	6.56	0.141	4.218	1410	2440	3000	6.625	45.35	0.719	5.187	3000	3000	3000
4.5	7.24	0.156	4.188	1560	2700	3000	6.625	47.06	0.750	5.125	3000	3000	3000
4.5	7.95	0.172	4.156	1720	2980	3000	6.625	53.73	0.875	4.875	3000	3000	3000
4.5	8.66	0.188	4.124	1880	3000	3000							
4.5	9.32	0.203	4.094	2030	3000	3000	8.625	11.35	0.125	8.375	650	1130	1410
4.5	10.01	0.219	4.062	2190	3000	3000	8.625	14.11	0.156	8.313	810	1410	1760
4.5	10.79	0.237	4.026	2370	3000	3000	8.625	16.94	0.188	8.249	980	1700	2130
4.5	11.35	0.250	4.000	2500	3000	3000	8.625	18.26	0.203	8.219	1060	1840	2290
4.5	12.66	0.281	3.938	2810	3000	3000	8.625	19.66	0.219	8.187	1140	1980	2480
4.5	13.96	0.312	3.876	3000	3000	3000	8.625	22.36	0.250	8.125	1300	2260	2830
4.5	14.98	0.337	3.826	3000	3000	3000	8.625	24.70	0.277	8.071	1450	2510	3000
4.5	19.00	0.438	3.624	3000	3000	3000	8.625	27.70	0.312	8.001	1630	2820	3000
4.5	22.51	0.531	3.438	3000	3000	3000	8.625	28.55	0.322	7.981	1680	2910	3000
4.5	27.54	0.674	3.152	3000	3000	3000	8.625	30.42	0.344	7.937	1790	3000	3000
							8.625	33.04	0.375	7.875	1960	3000	3000
5.563	4.86	0.083	5.397	670	1160	1450	8.625	38.30	0.438	7.749	2290	3000	3000
5.563	7.26	0.125	5.313	1010	1750	2190	8.625	43.39	0.500	7.625	2610	3000	3000
5.563	9.01	0.156	5.251	1260	2190	2730	8.625	48.40	0.562	7.501	2930	3000	3000
5.563	10.79	0.188	5.187	1520	2640	3000	8.625	53.40	0.625	7.375	3000	3000	3000
5.563	12.50	0.219	5.125	1770	3000	3000	8.625	60.71	0.719	7.187	3000	3000	3000
5.563	14.62	0.258	5.047	2090	3000	3000	8.625	63.08	0.750	7.125	3000	3000	3000
5.563	15.85	0.281	5.001	2270	3000	3000	8.625	67.76	0.812	7.001	3000	3000	3000
5.563	17.50	0.312	4.939	2520	3000	3000	8.625	72.42	0.875	6.875	3000	3000	3000
5.563	19.17	0.344	4.875	2780	3000	3000	8.625	81.44	1.000	6.625	3000	3000	3000
5.563	20.78	0.375	4.813	3000	3000	3000							
5.563	27.04	0.500	4.563	3000	3000	3000	10.75	17.65	0.156	10.438	740	1280	1600
5.563	32.96	0.625	4.313	3000	3000	3000	10.75	21.21	0.188	10.374	890	1550	1930
5.563	38.55	0.750	4.063	3000	3000	3000	10.75	22.87	0.203	10.344	960	1670	2090
							10.75	24.63	0.219	10.312	1040	1800	2250
6.625	5.80	0.083	6.459	560	980	1220	10.75	28.04	0.250	10.250	1190	2060	2570
6.625	7.59	0.109	6.407	740	1280	1600	10.75	31.20	0.279	10.192	1320	2290	2870
6.625	8.68	0.125	6.375	850	1470	1840	10.75	34.24	0.307	10.136	1460	2520	3000
6.625	9.76	0.141	6.343	960	1660	2080	10.75	38.23	0.344	10.062	1630	2830	3000
6.625	10.78	0.156	6.313	1060	1840	2300	10.75	40.48	0.365	10.020	1730	3000	3000
6.625	11.85	0.172	6.281	1170	2030	2530	10.75	48.24	0.438	9.874	2080	3000	3000
6.625	12.92	0.188	6.249	1280	2210	2770	10.75	54.74	0.500	9.750	2370	3000	3000
6.625	13.92	0.203	6.219	1380	2390	2990	10.75	61.15	0.562	9.626	2670	3000	3000
6.625	14.98	0.219	6.187	1490	2580	3000	10.75	67.58	0.625	9.500	2970	3000	3000
6.625	17.02	0.250	6.125	1700	2940	3000	10.75	77.03	0.719	9.312	3000	3000	3000
6.625	18.97	0.280	6.065	1900	3000	3000	10.75	86.18	0.812	9.126	3000	3000	3000
6.625	21.04	0.312	6.001	2120	3000	3000	10.75	92.28	0.875	9.000	3000	3000	3000
6.625	23.08	0.344	5.937	2340	3000	3000	10.75	98.30	0.938	8.874	3000	3000	3000
6.625	25.03	0.375	5.875	2550	3000	3000	10.75	104.13	1.000	8.750	3000	3000	3000
6.625	28.57	0.432	5.761	2930 2930	3000	3000	10.75	126.83	1.250	8.250	3000	3000	3000
6.625	32.71	0.500	5.625	3000	3000	3000				0.200	2000	2000	2000

 Table 8—Plain-End Line Pipe Dimensions^a, Weights^b, and Test Pressures (Continued) (See Appendix C for Metric Tables)

				(See Ap		for Metri	c lables)				
Size:		Wall					Size:		Wall				
Outside Dia., in.	Weight, lb/ft.	Thick., in.	Inside Dia., in.	Test Pr	ressures pa	si, min.	Outside Dia., in.	Weight, lb/ft.	Thick., in.	Inside Dia., in.	Test P	ressures p	si, min.
D	w_{pe}	t	d	LC30	LC52	LC65	D	w_{pe}	t	d	LC30	LC52	LC65
12.75	23.11	0.172	12.406	690	1190	1490	14	154.69	1.125	11.750	3000	3000	3000
12.75	25.22	0.188	12.374	750	1300	1630	14	170.21	1.250	11.500	3000	3000	3000
12.75	27.20	0.203	12.344	810	1410	1760							
12.75	29.31	0.219	12.312	880	1520	1900	16	31.75	0.188	15.624	600	1040	1300
12.75	33.38	0.250	12.250	1000	1730	2170	16	34.25	0.203	15.594	650	1120	1400
12.75	37.42	0.281	12.188	1120	1950	2440	16	36.91	0.219	15.562	700	1210	1510
12.75	41.45	0.312	12.126	1250	2160	2700	16	42.05	0.250	15.500	800	1380	1730
12.75	43.77	0.330	12.090	1320	2290	2860	16	47.17	0.281	15.438	900	1550	1940
12.75	45.58	0.344	12.062	1380	2390	2980	16	52.27	0.312	15.376	990	1720	2150
12.75	49.56	0.375	12.000	1500	2600	3000	16	57.52	0.344	15.312	1100	1900	2380
12.75	53.52	0.406	11.938	1620	2810	3000	16	62.58	0.375	15.250	1200	2070	2590
12.75	57.59	0.438	11.874	1750	3000	3000	16	67.62	0.406	15.188	1290	2240	2800
12.75	65.42	0.500	11.750	2000	3000	3000	16	72.80	0.438	15.124	1400	2420	3000
12.75	73.15	0.562	11.626	2250	3000	3000	16	77.79	0.469	15.062	1490	2590	3000
12.75	80.93	0.625	11.500	2500	3000	3000	16	82.77	0.500	15.000	1590	2760	3000
12.75	88.63	0.688	11.374	2750	3000	3000	16	92.66	0.562	14.876	1790	3000	3000
12.75	96.12	0.750	11.250	3000	3000	3000	16	102.63	0.625	14.750	1990	3000	3000
12.75	103.53	0.812	11.126	3000	3000	3000	16	112.51	0.688	14.624	2190	3000	3000
12.75	110.97	0.875	11.000	3000	3000	3000	16	122.15	0.750	14.500	2390	3000	3000
12.75	118.33	0.938	10.874	3000	3000	3000	16	131.71	0.812	14.376	2590	3000	3000
12.75	125.49	1.000	10.750	3000	3000	3000	16	141.34	0.875	14.250	2790	3000	3000
12.75	132.57	1.062	10.626	3000	3000	3000	16	150.89	0.938	14.124	2990	3000	3000
12.75	139.67	1.125	10.500	3000	3000	3000	16	160.20	1.000	14.000	3000	3000	3000
12.75	153.53	1.250	10.250	3000	3000	3000	16	169.43	1.062	13.876	3000	3000	3000
12.75	155.55	1.230	10.250	5000	5000	5000	16	178.72	1.125	13.750	3000	3000	3000
14	27.73	0.188	13.624	680	1190	1480	16	187.93	1.188	13.624	3000	3000	3000
14	29.91	0.203	13.594	740	1280	1600	16	196.91	1.250	13.500	3000	3000	3000
14	30.93	0.203	13.594	740	1330	1660	10	170.71	1.250	15.500	3000	5000	5000
14	32.23	0.210	13.562	800	1330	1730	18	35.76	0.188	17.624	530	920	1150
14	32.23 36.71	0.219	13.502	910	1580	1970	18	41.59	0.188	17.562	620	1080	1340
		0.230						41.39					
14	41.17		13.438	1020	1770	2220	18		0.250	17.500	710	1230	1530
14	45.61	0.312	13.376	1140	1970	2460	18	53.18	0.281	17.438	800	1380	1730
14	50.17	0.344	13.312	1250	2170	2720	18	58.94	0.312	17.376	880	1530	1920
14	54.57	0.375	13.250	1370	2370	2960	18	64.87	0.344	17.312	970	1690	2110
14	58.94	0.406	13.188	1480	2560	3000	18	70.59	0.375	17.250	1060	1840	2300
14	63.44	0.438	13.124	1600	2770	3000	18	76.29	0.406	17.188	1150	1990	2490
14	67.78	0.469	13.062	1710	2960	3000	18	82.15	0.438	17.124	1240	2150	2690
14	72.09	0.500	13.000	1820	3000	3000	18	87.81	0.469	17.062	1330	2300	2880
14	80.66	0.562	12.876	2050	3000	3000	18	93.45	0.500	17.000	1420	2460	3000
14	89.28	0.625	12.750	2280	3000	3000	18	104.67	0.562	16.876	1590	2760	3000
14	97.81	0.688	12.624	2510	3000	3000	18	115.98	0.625	16.750	1770	3000	3000
14	106.13	0.750	12.500	2730	3000	3000	18	127.21	0.688	16.624	1950	3000	3000
14	114.37	0.812	12.376	2960	3000	3000	18	138.17	0.750	16.500	2130	3000	3000
14	122.65	0.875	12.250	3000	3000	3000	18	149.06	0.812	16.376	2300	3000	3000
14	130.85	0.938	12.124	3000	3000	3000	18	160.03	0.875	16.250	2480	3000	3000
14	138.84	1.000	12.000	3000	3000	3000	18	170.92	0.938	16.124	2660	3000	3000
14	146.74	1.062	11.876	3000	3000	3000	18	181.56	1.000	16.000	2830	3000	3000

Table 8—Plain-End Line Pipe Dimensions^a, Weights^b, and Test Pressures (Continued) (See Appendix C for Metric Tables)

^aOutside diameter and wall thickness dimensions shown are subject to tolerances. Inside diameters are nominal, and are given here for information. ^bWeights shown are for carbon steel. To obtain the weight for the alloy ordered use the appropriate correction factor from 10.1.

Size: Outside	Weight,	Wall Thick.,	Inside	Test D.	00011*00 -	osi min	Size: Outside	Weight,	Wall Thick.,	Inside	_		
Dia., in.	lb/ft.	in.	Dia., in.	Test Pr	essures p	581, min.	Dia., in.	lb/ft.	in.	Dia., in.	Test P	ressures p	si, min.
Ď	w_{pe}	t	d	LC30	LC52	LC65	D	wpe	t	d	LC30	LC52	LC65
18	192.11	1.062	15.876	3000	3000	3000	22	224.28	1.000	20.000	2450	3000	3000
18	202.75	1.125	15.750	3000	3000	3000	22	237.48	1.062	19.876	2610	3000	3000
18	213.31	1.188	15.624	3000	3000	3000	22	250.81	1.125	19.750	2760	3000	3000
18	223.61	1.250	15.500	3000	3000	3000	22	264.06	1.188	19.624	2920	3000	3000
							22	277.01	1.250	19.500	3000	3000	3000
20	46.27	0.219	19.562	590	1020	1280	22	289.88	1.312	19.376	3000	3000	3000
20	52.73	0.250	19.500	680	1170	1460	22	302.88	1.375	19.250	3000	3000	3000
20	59.18	0.281	19.438	760	1320	1640	22	315.79	1.438	19.124	3000	3000	3000
20	65.60	0.312	19.376	840	1460	1830	22	328.41	1.500	19.000	3000	3000	3000
20	72.21	0.344	19.312	930	1610	2010							
20	78.60	0.375	19.250	1010	1760	2190	24	63.41	0.250	23.500	560	980	1220
20	84.96	0.406	19.188	1100	1900	2380	24	71.18	0.281	23.438	630	1100	1370
20	91.51	0.438	19.124	1180	2050	2560	24	78.93	0.312	23.376	700	1220	1520
20	97.83	0.469	19.062	1270	2190	2740	24	86.91	0.344	23.312	770	1340	1680
20	104.13	0.500	19.000	1350	2340	2930	24	94.62	0.375	23.250	840	1460	1830
20	116.67	0.562	18.876	1520	2630	3000	24	102.31	0.406	23.188	910	1580	1980
20	129.33	0.625	18.750	1690	2930	3000	24	110.22	0.438	23.124	990	1710	2140
20	141.90	0.688	18.624	1860	3000	3000	24	117.86	0.469	23.062	1060	1830	2290
20	154.19	0.750	18.500	2030	3000	3000	24	125.49	0.500	23.000	1130	1950	2440
20	166.40	0.812	18.376	2190	3000	3000	24	140.68	0.562	22.876	1260	2190	2740
20	178.72	0.875	18.250	2360	3000	3000	24	156.03	0.625	22.750	1410	2440	3000
20	190.96	0.938	18.124	2530	3000	3000	24	171.29	0.688	22.624	1550	2680	3000
20	202.92	1.000	18.000	2700	3000	3000	24	186.23	0.750	22.500	1690	2930	3000
20	214.80	1.062	17.876	2870	3000	3000	24	201.09	0.812	22.376	1830	3000	3000
20	226.78	1.125	17.750	3000	3000	3000	24	216.10	0.875	22.250	1970	3000	3000
20	238.68	1.188	17.624	3000	3000	3000	24	231.03	0.938	22.124	2110	3000	3000
20	250.31	1.250	17.500	3000	3000	3000	24	245.64	1.000	22.000	2250	3000	3000
20	261.86	1.312	17.376	3000	3000	3000	24	260.17	1.062	21.876	2390	3000	3000
20	273.51	1.375	17.250	3000	3000	3000	24	274.84	1.125	21.750	2530	3000	3000
							24	289.44	1.188	21.624	2670	3000	3000
22	50.94	0.219	21.562	540	930	1160	24	303.71	1.250	21.500	2810	3000	3000
22	58.07	0.250	21.500	610	1060	1330	24	317.91	1.312	21.376	2950	3000	3000
22	65.18	0.281	21.438	690	1200	1490	24	332.25	1.375	21.250	3000	3000	3000
22	72.27	0.312	21.376	770	1330	1660	24	346.50	1.438	21.124	3000	3000	3000
22		0.344	21.312	840	1460	1830	24		1.500	21.000	3000	3000	3000
22	86.61	0.375	21.250	920	1600	1990	24	374.31	1.562	20.876	3000	3000	3000
22	93.63	0.406	21.188	1000	1730	2160							
22	100.86	0.438	21.124	1080	1860	2330	26	68.75	0.250	25.500	520	900	1130
22	107.85	0.469	21.062	1150	2000	2490	26	77.18	0.281	25.438	580	1010	1260
22	114.81	0.500	21.000	1230	2130	2660	26	85.60	0.312	25.376	650	1120	1400
22	128.67	0.562	20.876	1380	2390	2990	26	94.26	0.344	25.312	710	1240	1550
22	142.68	0.625	20.750	1530	2660	3000	26	102.63	0.375	25.250	780	1350	1690
22	156.60	0.688	20.624	1690	2930	3000	26	110.98	0.406	25.188	840	1460	1830
22	170.21	0.750	20.500	1840	3000	3000	26	119.57	0.438	25.124	910	1580	1970
22	183.75	0.812	20.376	1990	3000	3000	26	127.88	0.469	25.062	970 1040	1690	2110
22	197.41	0.875	20.250	2150	3000	3000	26	136.17	0.500	25.000	1040	1800	2250
22	211.00	0.938	20.124	2300	3000	3000	26	152.68	0.562	24.876	1170	2020	2530

 Table 8—Plain-End Line Pipe Dimensions^a, Weights^b, and Test Pressures (Continued) (See Appendix C for Metric Tables)

Size:		Wall					Size:		Wall				
Outside Dia., in.	Weight, lb/ft.	Thick., in.	Inside Dia., in.	Test Pr	essures p	osi, min.	Outside Dia., in.	Weight, lb/ft.	Thick., in.	Inside Dia., in.	Test Pr	ressures pa	si, min.
Ď	w _{pe}	t	d	LC30	LC52	LC65	D	w_{pe}	t	d	LC30	LC52	LC65
26	169.38	0.625	24.750	1300	2250	2810	32	84.77	0.250	31.500	420	730	910
26	185.99	0.688	24.624	1430	2480	3000	32	95.19	0.281	31.438	470	820	1030
26	202.25	0.750	24.500	1560	2700	3000	32	105.59	0.312	31.376	530	910	1140
26	218.43	0.812	24.376	1690	2920	3000	32	116.30	0.344	31.312	580	1010	1260
26	234.79	0.875	24.250	1820	3000	3000	32	126.66	0.375	31.250	630	1100	1370
26	251.07	0.938	24.124	1950	3000	3000	32	136.99	0.406	31.188	690	1190	1480
26	267.00	1.000	24.000	2080	3000	3000	32	147.64	0.438	31.124	740	1280	1600
							32	157.94	0.469	31.062	790	1370	1710
28	74.09	0.250	27.500	480	840	1040	32	168.21	0.500	31.000	840	1460	1830
28	83.19	0.281	27.438	540	940	1170	32	188.70	0.562	30.876	950	1640	2050
28	92.26	0.312	27.376	600	1040	1300	32	209.43	0.625	30.750	1050	1830	2290
28	101.61	0.344	27.312	660	1150	1440	32	230.08	0.688	30.624	1160	2010	2520
28	110.64	0.375	27.250	720	1250	1570	32	250.31	0.750	30.500	1270	2190	2740
28	119.65	0.406	27.188	780	1360	1700	32	270.47	0.812	30.376	1370	2380	2970
28	128.93	0.438	27.124	840	1460	1830	32	290.86	0.875	30.250	1480	2560	3000
28	137.90	0.469	27.062	900	1570	1960	32	311.17	0.938	30.124	1580	2740	3000
28	146.85	0.500	27.000	960	1670	2090	32	331.08	1.000	30.000	1690	2930	3000
28	164.69	0.562	26.876	1080	1880	2350	32	350.90	1.062	29.876	1790	3000	3000
28	182.73	0.625	26.750	1210	2090	2610	32	370.96	1.125	29.750	1900	3000	3000
28	200.68	0.688	26.624	1330	2300	2870	32	390.94	1.180	29.624	2000	3000	3000
28	218.27	0.750	26.500	1450	2510	3000	32	410.51	1.250	29.500	2110	3000	3000
28	235.78	0.812	26.376	1570	2710	3000		110101	1.200	27.000	2110	2000	2000
28	253.48	0.875	26.250	1690	2930	3000	34	90.11	0.250	33.500	400	690	860
28	271.10	0.938	26.124	1810	3000	3000	34	101.19	0.281	33.438	450	770	970
28	288.36	1.000	26.000	1930	3000	3000	34	112.25	0.312	33.376	500	860	1070
-0	200.00	11000	20.000	1700	2000	2000	34	123.65	0.344	33.312	550	950	1180
30	79.43	0.250	29.500	450	780	980	34	134.67	0.375	33.250	600	1030	1290
30	89.19	0.281	29.438	510	880	1100	34	145.67	0.406	33.188	640	1120	1400
30	98.93	0.312	29.376	560	970	1220	34	157.00	0.438	33.124	700	1210	1510
30	108.95	0.344	29.312	620	1070	1340	34	167.95	0.469	33.062	740	1290	1610
30	118.65	0.375	29.250	680	1170	1460	34	178.89	0.500	33.000	790	1380	1720
30	128.32	0.406	29.188	730	1270	1580	34	200.70	0.562	32.876	890	1550	1930
30	138.29	0.400	29.100	790	1370	1710	34	200.70	0.625	32.750	990	1720	2150
30	147.92	0.469	29.062	840	1460	1830	34	244.77	0.688	32.624	1090	1890	2150
30	157.53	0.500	29.002	900	1560	1950	34	266.33	0.750	32.500	1190	2060	2580
30	176.69	0.562	29.000	1010	1750	2190	34	200.33 287.81	0.812	32.300 32.376	1290	2000 2240	2380
30	196.08	0.625	28.870 28.750		1950	2190 2440		309.55	0.812	32.370	1390	2240 2410	3000
30	215.38	0.623	28.730	1130 1240	2150	2440 2680	34	331.21		32.230 32.124	1390 1490	2580	3000
				1240			34	352.44	0.938				3000
30 30	234.29 253.12	0.750	28.500 28.376	1350 1460	2340 2530	2930 3000	34	352.44 373.59	1.000	32.000 31.876	1590 1690	2750 2920	3000
30 30	255.12	0.812 0.875	28.376 28.250	1460 1580	2330 2730	3000	34 34	373.39 394.99	1.062	31.876	1690 1790	3000	3000
									1.125				
30	291.14	0.938	28.124	1690	2930	3000	34	416.31	1.188	31.624	1890	3000	3000
30	309.72	1.000	28.000	1800	3000	3000	34	437.21	1.250	31.500	1990	3000	3000
30	328.22	1.062	27.876	1910	3000	3000		05.45	0.050	25 500	200	(50	010
30	346.93	1.125	27.750	2030	3000	3000	36	95.45	0.250	35.500	380	650 720	810
30	365.56	1.188	27.624	2140	3000	3000	36	107.20	0.281	35.438	420	730	910
30	383.81	1.250	27.500	2250	3000	3000	36	118.92	0.312	35.376	470	810	1010

Table 8—Plain-End Line Pipe Dimensions^a, Weights^b, and Test Pressures (Continued) (See Appendix C for Metric Tables)

	<u> </u>		337.11					0.		337.11				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Size: Outside	Weight	Wall Thick	Inside	T4 D-			Size: Outside	Weight	Wall Thick	Inside			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Test Pr	essures p	si, min.					Test P	ressures ps	si, min.
65 142.08 0.375 53.250 560 980 1220 40 288.86 0.688 38.624 930 1610 2010 36 164.34 0.469 35.124 660 1140 1420 40 314.39 0.750 38.500 1010 1760 2180 36 177.97 0.469 35.002 750 1300 1630 40 365.62 0.875 38.250 1180 2100 2540 36 212.70 0.582 34.876 840 1460 1830 40 416.52 1.000 3800 130 2340 2340 2360 36 235.13 0.625 34.876 120 1100 1500 2400 40 457.44 1.188 37.64 1600 2780 3000 36 328.24 0.875 34.360 1500 2600 3000 42 166.71 0.374 41.250 480 840 1040					LC30	LC52	LC65					LC30	LC52	LC65
65 15.4.3 0.406 35.18.8 610 1060 1320 40 314.39 0.750 38.300 1100 1700 2190 36 177.97 0.409 35.062 700 1220 1520 40 36.522 0.875 38.20 1180 2050 2560 36 177.97 0.409 35.002 750 1300 1630 40 391.32 0.988 38.14 1270 2190 2740 36 259.47 0.688 34.624 1030 1790 2240 40 441.64 1.062 37.876 1430 2780 3000 36 259.47 0.688 34.624 1030 1220 2110 2440 40 472.41 188 37.624 1600 2780 3000 36 351.25 0.938 34.124 1410 2440 40 517.31 1.250 37.60 140 53.88 200 3000 3000 42	36	131.00	0.344	35.312	520	890	1120	40	262.83	0.625	38.750	840	1460	1830
36 16635 0.438 35.124 660 140 1420 40 339.84 0.812 38.76 1100 1900 2580 36 177.97 0.469 35.062 700 1220 1520 40 391.32 0.938 38.124 1180 2050 2560 36 212.70 0.562 34.876 840 1460 1830 40 441.65 1.002 37.876 1430 2490 3000 36 236.13 0.625 34.570 940 1630 2030 40 441.64 1.102 37.876 1500 2500 3000 36 236.16 0.812 34.376 1202 2110 2440 40 470.4 1500 2760 3000 42 153.04 0.344 41.38 400 170 960 36 373.80 1.002 33.756 1500 2760 3000 42 194.42 0.438 41.124 560	36	142.68	0.375	35.250	560	980	1220	40	288.86	0.688	38.624	930	1610	2010
36 177.97 0.469 35.062 700 1220 1520 40 365.62 0.875 38.250 1180 2050 2540 36 127.0 0.562 34.876 840 1460 1830 40 361.22 0.938 38.124 1270 1520 2140 2930 36 259.47 0.688 34.624 1030 1790 2240 40 467.08 1.125 37.750 1430 2490 3000 36 355.16 0.812 34.376 1220 2110 2640 40 47.731 1.250 37.50 1600 2780 3000 36 351.25 0.938 34.124 1410 2440 3000 42 165.71 0.375 41.20 280 900 1130 36 351.25 0.938 34.124 1410 2440 3000 42 165.71 0.375 41.20 800 1250 480 840 160.2 1130 163 441.41 125 800 1250 1250 1250	36	154.34	0.406	35.188	610	1060	1320	40	314.39	0.750	38.500	1010	1760	2190
36 189.57 0.500 35.000 750 1300 1630 40 311.32 0.938 81.24 1270 2190 2740 36 236.13 0.623 34.876 840 1630 2030 40 441.64 1.002 37.876 1430 2490 3000 36 236.13 0.623 34.500 1130 1950 2440 40 441.64 1.188 37.50 1520 2630 3000 36 325.25 0.813 34.204 1130 1950 2440 40 40.4 41.41.188 37.60 1600 2780 3000 36 373.80 1.000 34.000 1500 2600 3000 42 166.71 0.374 41.88 50.990 1130 36 419.02 1.125 33.50 1590 2700 3000 42 194.42 0.640 41.02 1.130 1130 120 1130 120 1130 120 </td <td>36</td> <td>166.35</td> <td>0.438</td> <td>35.124</td> <td>660</td> <td>1140</td> <td>1420</td> <td>40</td> <td>339.84</td> <td>0.812</td> <td>38.376</td> <td>1100</td> <td>1900</td> <td>2380</td>	36	166.35	0.438	35.124	660	1140	1420	40	339.84	0.812	38.376	1100	1900	2380
36 212.70 0.562 34.876 840 1460 1830 40 416.52 1.006 38.000 1350 2340 2930 36 236.47 0.688 34.624 1030 1790 2240 40 467.68 1.125 37.876 1430 2490 3000 36 238.23 0.750 34.500 1130 1950 2240 40 467.68 1.125 37.750 1520 2630 3000 36 305.16 0.812 34.376 1220 2110 2640 40 457.31 1.250 37.500 1690 2930 3000 36 373.380 1.000 34.000 126 1.310 2280 2840 40 41.312 440 770 960 36 373.380 1.000 34.000 1200 3000 42 180.35 0.406 41.1312 440 770 960 36 419.02 1.125 33.750 1690 2930 3000 220 16.42 10.305 0.466 41.062	36	177.97	0.469	35.062	700	1220	1520	40	365.62	0.875	38.250	1180	2050	2560
36 236.13 0.625 34.750 940 1630 2030 40 441.64 1.062 37.876 1430 2490 3000 36 259.47 0.688 34.624 1030 1790 2240 40 467.08 1.125 37.750 1520 2630 3000 36 305.16 0.812 34.376 1220 2110 2640 40 491.44 1188 37.624 1600 2780 3000 36 328.24 0.875 34.250 1310 2280 2800 40 517.31 1.250 37.50 1690 2930 3000 36 375.01 1.062 33.761 1590 2760 3000 42 180.35 0.406 41.188 550 980 120 36 441.69 1.188 33.624 1780 3000 3000 42 294.30 0.406 41.082 600 1500 120 130 36 441.69 1.250 33.500 1800 3000 3000 42 294.50		189.57	0.500		750	1300		40	391.32	0.938		1270	2190	
36 259.47 0.688 34.624 1030 1790 2240 40 467.08 1.125 37.750 1520 2630 3000 36 282.35 0.750 34.500 1130 1950 2440 40 492.44 1.185 37.620 1600 2780 3000 36 351.25 0.938 34.124 1410 2440 3000 42 166.71 0.375 41.250 480 1040 36 351.25 0.938 34.124 1410 2440 3000 42 166.71 0.375 41.250 480 1040 36 410.21 1.125 33.750 1690 2930 3000 42 180.35 0.406 41.188 520 900 1130 36 441.69 1.188 35.62 1780 3000 3000 42 280.72 0.625 40.750 800 1300 1200 570 38 1255 0.312 37.376 </td <td></td> <td></td> <td></td> <td>34.876</td> <td></td> <td></td> <td></td> <td>40</td> <td></td> <td>1.000</td> <td></td> <td></td> <td></td> <td></td>				34.876				40		1.000				
36 282.35 0.750 34.500 1130 1950 2440 40 492.44 1.188 37.624 1600 2780 3000 36 335.16 0.812 34.376 1220 2110 2640 40 517.31 1.250 37.500 1690 2780 3000 36 351.25 0.938 34.124 1410 2440 3000 42 165.71 0.375 41.250 480 840 1040 36 373.80 1.000 34.000 1500 2600 3000 42 166.71 0.375 41.250 480 840 1040 36 419.02 1.125 33.750 1690 2930 3000 42 194.42 0.438 41.124 560 980 1220 36 443.91 1.250 33.500 1880 3000 3000 42 208.03 0.469 41.062 600 1050 1310 1250 1250 1570 38 125.58 0.312 37.376 400 770 960					940			40				1430		
36 305.16 0.812 34.376 1220 2110 2640 40 \$17.31 1.250 37.500 1690 2930 3000 36 351.25 0.938 34.124 1410 2240 2840 42 153.04 0.344 41.312 440 770 960 36 351.25 0.938 34.102 1410 2240 3000 42 166.71 0.375 41.250 480 840 1040 36 396.27 1.062 33.876 1590 2760 3000 42 180.35 0.406 41.188 520 900 1130 36 441.69 1.188 33.624 1780 3000 3000 42 208.03 0.469 41.062 600 1050 1310 36 463.91 1.250 33.500 1880 3000 3000 42 248.12 0.562 40.750 800 1330 1200 38 153.50 0.344 37.312 490 850 1060 42 30.355 0.688														
36 328.24 0.875 34.250 1310 2280 2840 36 351.25 0.938 34.124 1410 2440 3000 42 153.04 0.344 41.312 440 770 960 36 373.80 1.000 34.000 1500 2260 3000 42 166.71 0.375 41.250 480 840 1040 36 419.02 1.125 33.760 1690 2930 3000 42 194.42 0.438 41.124 560 980 1220 36 441.69 1.188 33.621 1780 3000 3000 42 294.03 0.488 41.024 600 1050 1110 1390 36 463.91 1.250 33.500 1880 3000 3000 42 208.03 0.488 41.024 600 150 120 150 38 125.58 0.312 37.376 440 770 960 42 303.55 0.688 40.624 880 1530 1920 38														
36 351.25 0.938 34.124 1410 2440 3000 42 153.04 0.344 41.312 440 770 960 36 373.80 1.000 34.000 1500 2600 3000 42 166.71 0.375 41.250 480 840 1040 36 419.02 1.125 33.750 1690 2930 3000 42 194.42 0.438 41.124 560 980 1220 36 441.69 1.188 33.624 1780 3000 3000 42 280.30 0.469 41.062 600 1050 1310 36 463.91 1.250 3.350 1880 3000 3000 42 280.30 0.469 41.062 600 1050 1310 38 125.58 0.312 37.376 440 770 960 42 30.354 0.625 40.750 800 1300 1740 38 150.69 0.375 37.25 50 920 1150 42 30.41 0.750								40	517.31	1.250	37.500	1690	2930	3000
36 373.80 1.000 34.000 1500 2600 3000 42 166.71 0.375 41.250 480 840 1040 36 396.27 1.062 33.876 1590 2760 3000 42 180.35 0.406 41.188 520 900 1130 36 414.09 1.188 33.624 1780 3000 3000 42 194.42 0.438 41.162 600 1050 1310 36 441.09 1.188 33.624 1780 3000 3000 42 298.03 0.469 41.062 600 1050 1310 36 441.09 1.188 33.500 1880 3000 3000 42 221.61 0.500 40.00 640 1110 1390 38 125.58 0.312 37.376 440 770 960 42 303.55 0.688 40.624 880 1530 1920 38 150.69 0.375 37.250 530 920 1150 42 336.41 0.502														
36 396.27 1.062 33.876 1590 2760 3000 42 180.35 0.406 41.188 520 900 1130 36 411.09 1.128 33.750 1690 2930 3000 42 194.32 0.438 41.124 560 980 1220 36 441.69 1.188 33.620 1780 3000 3000 42 298.03 0.469 41.062 600 1050 1310 36 441.69 1.188 33.620 1880 3000 3000 42 298.03 0.469 41.020 600 1050 1310 38 125.58 0.312 37.376 440 770 960 42 276.18 6.625 40.876 720 1250 1570 38 150.69 0.375 37.250 530 920 1150 42 330.41 0.750 40.50 960 1670 2090 2610 38 157.71 0.449 37.062 670 1160 1440 42 411.35 <														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
36 463.91 1.250 33.500 1880 3000 3000 42 221.61 0.500 41.000 640 1110 1390 38 125.58 0.312 37.376 440 770 960 42 248.72 0.562 40.876 720 1250 1570 38 138.35 0.344 37.312 490 850 1060 42 303.55 0.625 40.750 800 1390 1740 38 150.69 0.375 37.250 530 920 1150 42 30.41 0.750 40.500 960 1670 2090 38 150.69 0.375 37.124 620 1080 1350 42 384.31 0.875 40.250 1130 1950 2440 38 107.9 0.469 37.062 670 1160 1440 42 411.35 0.938 40.124 1210 2090 2610 38 200.25 0.500 37.000 710 1230 1540 42 437.88 1.000 <														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
38 125.58 0.312 37.376 440 770 960 42 276.18 0.625 40.750 800 1390 1740 38 138.35 0.344 37.312 490 850 1060 42 303.55 0.688 40.624 880 1530 1920 38 150.69 0.375 37.250 530 920 1150 42 330.41 0.750 40.500 960 1670 2090 38 163.01 0.406 37.188 580 1000 1250 42 357.19 0.812 40.376 1040 1810 2260 38 187.99 0.469 37.062 670 1160 1440 42 411.35 0.938 40.124 1210 2090 2610 38 200.25 0.500 37.000 710 1230 1540 42 44.33 1.062 39.876 1370 2370 2960 38 224.71 0.562 36.750 890 1540 1210 42 491.11 1.125	36	463.91	1.250	33.500	1880	3000	3000							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•						0.40							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
38 224.71 0.562 36.876 800 1380 1730 42 464.33 1.062 39.876 1370 2370 2960 38 249.48 0.625 36.750 890 1540 1920 42 491.11 1.125 39.876 1370 2370 2960 38 249.48 0.625 36.750 890 1690 2120 42 491.11 1.125 39.750 1450 2510 3000 38 298.37 0.750 36.500 1070 1850 2310 42 544.01 1.250 39.500 1610 2790 3000 38 346.93 0.875 36.250 1240 2160 2690 38 395.16 1.000 36.000 1420 2460 3000 3000 38 418.96 1.062 35.876 1510 2620 3000 38 418.96 1.062 35.876 1510 2620 3000 38 467.06 1.188 35.624 1690 2930 3000 38 467.06 1.188 35														
38 249.48 0.625 36.750 890 1540 1920 42 491.11 1.125 39.750 1450 2510 3000 38 274.16 0.688 36.624 980 1690 2120 42 517.82 1.188 39.624 1530 2650 3000 38 298.37 0.750 36.500 1070 1850 2310 42 517.82 1.188 39.624 1530 2650 3000 38 322.50 0.812 36.376 1150 2000 2500 2500 38 346.93 0.875 36.250 1240 2160 2690 38 371.28 0.938 36.124 1330 2310 2890 3000 38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 3000 38 467.06 1.188 35.624 1690 2930 3000 3000 38 467.06 1.188 35.500 1780 3000 3000 3000 4														
38 274.16 0.688 36.624 980 1690 2120 42 517.82 1.188 39.624 1530 2650 3000 38 298.37 0.750 36.500 1070 1850 2310 42 544.01 1.250 39.500 1610 2790 3000 38 322.50 0.812 36.376 1150 2000 2500 42 544.01 1.250 39.500 1610 2790 3000 38 346.93 0.875 36.250 1240 2160 2690 38 371.28 0.938 36.124 1330 2310 2890 38 395.16 1.000 36.000 1420 2460 3000 38 418.96 1.062 35.876 1510 2620 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000														
38 298.37 0.750 36.500 1070 1850 2310 42 544.01 1.250 39.500 1610 2790 3000 38 322.50 0.812 36.376 1150 2000 2500 38 346.93 0.875 36.250 1240 2160 2690 38 371.28 0.938 36.124 1330 2310 2890 38 395.16 1.000 36.000 1420 2460 3000 38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 38 490.61 1.250 39.250 510 880 1100 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550														
38 322.50 0.812 36.376 1150 2000 2500 38 346.93 0.875 36.250 1240 2160 2690 38 371.28 0.938 36.124 1330 2310 2890 38 395.16 1.000 36.000 1420 2460 3000 38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 198.01 0.469 39.062														
38 346.93 0.875 36.250 1240 2160 2690 38 371.28 0.938 36.124 1330 2310 2890 38 395.16 1.000 36.000 1420 2460 3000 38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062								42	344.01	1.230	39.300	1010	2790	5000
38 371.28 0.938 36.124 1330 2310 2890 38 395.16 1.000 36.000 1420 2460 3000 38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
38 395.16 1.000 36.000 1420 2460 3000 38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
38 418.96 1.062 35.876 1510 2620 3000 38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
38 443.05 1.125 35.750 1600 2770 3000 38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
38 467.06 1.188 35.624 1690 2930 3000 38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
38 490.61 1.250 35.500 1780 3000 3000 40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
40 132.25 0.312 39.376 420 730 910 40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370	50	490.01	1.250	55.500	1700	5000	5000							
40 145.69 0.344 39.312 460 800 1010 40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370	40	132.25	0.312	39.376	420	730	910							
40 158.70 0.375 39.250 510 880 1100 40 171.68 0.406 39.188 550 950 1190 40 185.06 0.438 39.124 590 1020 1280 40 198.01 0.469 39.062 630 1100 1370														
40171.680.40639.188550950119040185.060.43839.1245901020128040198.010.46939.06263011001370														
40185.060.43839.1245901020128040198.010.46939.06263011001370														
40 198.01 0.469 39.062 630 1100 1370														
40 210.93 0.500 39.000 680 1170 1460	40	210.93	0.500	39.000	680	1170	1460							
40 236.71 0.562 38.876 760 1320 1640	40													

 Table 8—Plain-End Line Pipe Dimensions^a, Weights^b, and Test Pressures (Continued) (See Appendix C for Metric Tables)

10 Dimensions, Weights, and Lengths

10.1 DIMENSIONS AND WEIGHTS

Line pipe shall be furnished in the sizes, wall thicknesses, and weights provided in Table 8 and 10.2 and 10.3 as specified on the purchase order. The accuracy of all measuring instruments except ring and plug thread gages, used for acceptance/rejection shall be verified at least once every operating shift. Accuracy verification of rules, length measuring tapes, and other non-adjustable measuring devices shall be defined as a visual check of marking's legibility and the general wear of fixed reference points. The verification procedure of these working gages shall be documented. The adjustable and non-adjustable designation utilized by the manufacturer shall be documented.

If measuring equipment, whose calibration or verification is required under the provisions of the specification, is subject to unusual or severe conditions such as would make its accuracy questionable, recalibration or reverification shall be performed before further use of the equipment.

Notes:

1. The plain-end weight, w_{pe} shall be calculated using the following formula.

2. The correction factor for grades not listed in Table 4 shall be subject to agreement between the purchaser and manufacturer.

US Customary Formula	Metric Formula
$w_{pe} = 10.68 (D - t)tF$	$w_{pe} = 0.02466 (D-t)tF$

where

- w_{pe} = plain-end weight, rounded to the nearest 0.01 lb/ft (0.01 kg/m),
- D = outside diameter, rounded to the nearest 0.001 in (0.1 mm for sizes less than 457 mm, and 1 mm for sizes 457 mm and larger),
- t = specified wall thickness, rounded to the nearest 0.001 in. (0.1 mm),
- F = Correction Factor.

	F
LC 30-1812	1.017
LC 52-1200	0.990
LC 65-2205	0.995
LC 65-2506	0.995
LC 30-2242	1.038

10.2 DIAMETER

The outside diameter shall be within the tolerances specified in Table 9. (Inside diameters are governed by the outside diameter and weight tolerances.) Pipe with outside diameters intermediate to those listed in Table 8 is available by agreement between the purchaser and the manufacturer. Such pipe shall be consistent with all requirements of this specification and shall be marked in accordance with Section 13 and Appendix G, using the specified outside diameter for the size designation.

10.3 WALL THICKNESS

Each length of pipe shall be measured for conformance to wall-thickness requirements. The wall thickness at any place shall be within the tolerances specified in Table 9, except that the weld area shall not be limited by the plus tolerance. Wallthickness measurements shall be made with a mechanical caliper or with a properly calibrated nondestructive inspection device of appropriate accuracy. In case of dispute. the measurement determined by use of the mechanical caliper shall govern. The mechanical caliper shall be fitted with contact pins having circular cross-sections of $1/_4$ in. (6.35 mm) diameter. The end of the pin contacting the inside surface of the pipe shall be rounded to a maximum radius of $1^{1/2}$ in. (38.10) mm) for pipe $6^{5}/_{8}$ in. and larger, a maximum radius of d/4 for pipe less than $6^{5/8}$ in., with a minimum radius of 1/8 in. The end of the pin contacting the outside surface of the pipe shall be either flat or rounded to a radius of not less than $1^{1/2}$ in. (38.10 mm). Pipe with wall thicknesses intermediate to those listed in Table 8 is available by agreement between the purchaser and manufacturer. Such pipe shall be consistent with all requirements of this specification and shall be marked in accordance with Section 13.

10.4 WEIGHT

Each length of pipe $5^{9/16}$ in. and larger shall be weighed separately, and the carload weights determined. Lengths of pipe $4^{1/2}$ in. and smaller shall be weighed either individually or in convenient lots, at the option of the manufacturer, and the carload weights determined. A carload is considered to be a minimum of 40,000 lb. (18144 kg).

The weights determined as described above shall conform to the specified weights or calculated weights for plain-end pipe.

Note: Calculated weights shall be determined in accordance with the following formula:

$$W_L = (w_{pe} \times L) + e_w$$

where

 W_L = calculated weight of a piece of pipe of length L lb (kg),

 w_{pe} = plain-end weight, lb/ft (kg/m),

L = length of pipe, including end finish, as defined in 10.5, ft (m).

Outs	ide Diameter D	Out-of-Roundness
Pipe Body		For pipe larger than 20 in. and for a distance of 4 in. (101.6 mm)
1.900 in. and smaller	+0.016 in. (0.41 mm) -0.031 in. (0.79 mm)	from the ends of the pipe, the maximum outside diameter shall not be more than 1% larger than specified, and the minimum outside
$2^{3}/_{8}$ in. through 18 in.	±0.75%	diameter shall not be more than 1% smaller than specified, measured
20 in. through 36 in.	$\pm 1.00\%$	with a bar gage, caliper, or other device capable of measuring the
Larger than 36 in.	$\pm 1.00\%$	actual minimum and maximum diameters.

Table 9—Tolerance on Dimensions and Weights

Note: In the case of pipe hydrostatically tested to pressures in excess of standard test pressures, other tolerances may be agreed upon between the manufacturer and purchaser.

For pipe $4^{1/2}$ -in. OD and larger, the outside diameter measurements on the body of the pipe shall be made at the mill with a diameter tape on a random basis, but not less than three measurements per 8 hour working turn.

Pipe Ends

Pipe $10^{3}/_{4}$ in. and smaller shall not be more than $^{1}/_{64}$ in. (0.40 mm) smaller than the specified outside diameter for a distance of 4 in. (101.6 mm) from the end of the pipe and shall permit the passage over the ends, for a distance of 4 in. (101.6 mm), of a ring gage which has a bore $\frac{1}{16}$ in. (1.59 mm) larger than the specified outside diameter of the pipe. Pipe $12^{3}/_{4}$ in. to 20 in., inclusive, shall not be more than $1/_{32}$ in. (0.79 mm) smaller than the specified outside diameter for a distance of 4 in. (101.6 mm) from the end of the pipe and shall permit passage over the ends, for a distance of 4 in. (101.6 mm), of a ring gage which has a bore $3/_{32}$ in. (2.38 mm) larger than the specified outside diameter of the pipe. For SAW line pipe, it is permissible to notch or slot the ring gage to permit passage of the gage over the weld bead. At the option of the manufacturer, the minimum outside diameter of pipe in sizes 20 in. and smaller may be measured with a diameter tape. Pipe larger than 20 in. shall not be more than 1/32 in. (0.79 mm) smaller nor more than $\frac{3}{32}$ in. (2.38 mm) larger than the specified outside diameter for a distance of 4 in. (101.6 mm) from the end of the pipe, as measured with a diameter tape.

By agreement between the purchaser and the manufacturer, the tolerance on outside diameter at the ends may be applied instead to the inside diameter at the ends.

10.5 LENGTH

Unless otherwise agreed upon between the purchaser and the manufacturer, pipe shall be furnished in the lengths and tolerances shown in Table 10, as specified on the purchase order. The accuracy of length measuring devices for lengths of pipe less than 100 ft (30 m) shall be ± 0.1 ft (0.03 m).

10.6 STRAIGHTNESS

Pipe shall be reasonably straight. All pipe shall be randomly checked for straightness and deviation from a straight line shall not exceed 0.2% the length. Measurements may be made using a taut string or wire from end-to-end along the side of the pipe measuring the greatest deviation.

10.7 JOINTERS

Unless otherwise specified on the purchase order, jointers (two or more pieces of pipe welded together to make a stan-

Wall Thickness

Size (OD in.) and Process	Tolerance, Percent All Grades
2.875 and smaller, seamless & welded	+15.0 -12.5
3.50 seamless & welded	+15.0 -12.5
4.00 through 18, seamless & welded	+15.0 -12.5
20 and larger, welded	+19.5 -8.0
20 and larger, seamless	+17.5 -10.0
Weight Single lengths	
All Grades	+10.0% -3.5%
Carload lots All Grades	-1.75%

A carload is considered to be a minimum of 40,000 lb. (18144 kg).

When a wall thickness minus tolerance less than that shown above is agreed upon between the purchaser and the manufacturer, the plus tolerance shall be increased by an amount (percentage) equal to the decrease in minus tolerance, and the plus weight tolerance shall be increased to 22.5% less the wall thickness minus tolerance. Weight tolerances apply to the calculated weights.

dard length) may be furnished. No lengths used in making a jointer shall be less than 5 ft. (1.5 m). Details of procedures and tests required for furnishing such jointers shall be by agreement between the purchaser and the manufacturer.

10.8 PIPE ENDS

Unless otherwise ordered, plain-end pipe (other than double-extra-strong pipe) in sizes $2^{3}/_{8}$ in. and larger shall be furnished with ends beveled to an angle of 30° , $+5^{\circ}$, -0° , measured from a line drawn perpendicular to the axis of the pipe, and with a root face of $1/_{16}$ in. $\pm 1/_{32}$ in. (1.59 ± 0.79 mm). Double-extra-strong plain-end pipe $2^{3}/_{8}$ -in. OD and larger shall be furnished with square-cut ends, unless beveled ends (as above) are specified on the purchase order. For seamless pipe where internal machining is required to maintain the root face tolerance, the angle of the internal taper, measured from the longitudinal axis, shall be no larger than that listed below:

Specified Wall Thickness (in.)	Maximum Angle of Taper (Deg.)
Less than 0.418 (10.6 mm)	7
0.418 thru 0.555 (10.6 through 14.1 mm)	$9^{1}/_{2}$
0.556 thru 0.666 (14.1 through 16.9 mm)	11
Over 0.666 (16.9 mm)	14

For the removal of an internal burr on welded pipe larger than $4^{1/2}$ -in. OD, the internal taper, measured from the longitudinal axis, shall be no larger than 7°.

The end-finish of pipe smaller than $2^{3}/_{8}$ -in. OD shall be specified on the purchase order. For pipe $2^{3}/_{8}$ -in. OD and larger, the pipe ends shall be cut square within $1/_{16}$ in. (1.59 mm). Pipe ends from each end-finishing machine shall be checked for compliance at least three times per 8 hour working turn.

Both ends of pipe with filler-metal welds shall have the inside reinforcement removed for a distance of approximately 4 in. (101.6 mm) from the end of the pipe.

Note: The purchaser is directed to the applicable code for the recommended angle of pipe bevel.

Table	10—	 Tolerances or 	Lengths ^a
-------	-----	-----------------------------------	----------------------

1	2	3	4	5
	Shortest Length in Entire Shipment	Shortest Length in 95% of Entire Shipment	Shortest Length in 90% of Entire Shipment	Minimum Average Length Entire Shipment
Plain-End Pipe				
Single random lengths	9.0 ft (2.74 mm)	—	—	17.5 ft (5.33 m)
Double random lengths	14.0 ft (4.27 mm)	—	26.3 ft (8.00 m)	35.0 ft (10.67 m)
As agreed upon lengths in excess of 20 ft. (6.10 mm)	40% of average agreed upon	_	75% of average agreed upon	

^aBy agreement between the purchaser and the manufacturer, these tolerances shall apply to each carload.

11 Nondestructive Inspection

11.1 INSPECTION METHODS FOR WELDED PIPE

The weld seam of welded pipe shall be inspected fulllength (100%) in accordance with methods specified below. The location of equipment at the manufacturer's facility shall be at the discretion of the manufacturer; however, the nondestructive inspection must take place after all heat-treating and expansion operations, if performed, but may take place before cropping and beveling.

a. Welded pipe except electric-welded pipe shall be inspected full-length by radiological methods in accordance with 11.4 through 11.14 or by ultrasonic or electromagnetic methods in accordance with 11.15. For pipe larger than $6^{5}/_{8}$ -in. OD, eddy-current method shall not be used.

b. Electric-welded pipe shall be inspected by ultrasonic or electromagnetic methods in accordance with 8.15. For pipe larger than $6^{5}/_{8}$ -in. OD, eddy-current method shall not be used.

11.2 INSPECTION METHODS FOR SEAMLESS PIPE

Seamless pipe shall be inspected full-length for longitudinal defects by ultrasonic or electromagnetic methods in accordance with 11.16. Eddy-current method shall not be used for pipe larger than $6^{5}/_{8}$ -in. OD. The location of the equipment shall be at the discretion of the manufacturer; however, the nondestructive inspection shall take place after all heat-treating and expansion operations, if performed, but may take place before cropping, beveling, and end-sizing.

11.3 INSPECTION METHODS FOR CENTRIFUGALLY-CAST PIPE

Centrifugally-cast pipe shall be inspected full-length for defects by ultrasonic methods, in accordance with 11.17. The location of the equipment shall be at the discretion of the manufacturer; however, the nondestructive inspection shall take place after all heat-treating and expansion operations, if performed, but may take place before cropping, beveling, and end-sizing.

11.4 RADIOLOGICAL INSPECTION-EQUIPMENT

The homogeneity of weld seams examined by radiological methods shall be determined by means of X-rays directed through the weld onto a suitable radiographic film or fluorescent screen. A television screen may be used, provided that adequate sensitivity can be obtained.

11.5 FLUOROSCOPIC OPERATOR QUALIFICATION

Operators of fluoroscopic equipment shall be trained, tested, and certified by the manufacturer.

Details of such training, testing, and certification programs shall be available to the purchaser. Included in this program shall be:

a. Classroom instructions in the fundamentals of radiological inspection techniques.

b. On-the-job training designed to familiarize the Operator with specific installations including the appearance and interpretation of weld imperfections and defects. The length of time for such training shall be of sufficient duration to assure adequate assimilation of the knowledge required for conducting the inspection.

c. Knowledge of appropriate requirements of this specification.

d. An eye examination at least once per year to determine the Operator's optical capability to perform the required inspection.

e. Upon completion of items a, b, and c, above, an examination shall be given by the manufacturer to determine if the Operator is qualified to properly perform fluoroscopic examinations.

11.6 OPERATOR CERTIFICATION

Certified Operators whose work has not included fluoroscopic inspection for a period of one year or more shall be recertified by successfully completing the examination of item e, above, and also passing the eye examination of item d, above. Substantial changes in procedure or equipment shall require recertification of the Operators.

11.7 REFERENCE STANDARD

Unless otherwise specified, the reference standard shall be the ISO Wire Penetrameter described in 11.8. By agreement between purchaser and manufacturer, other standard penetrameters may be used.

11.8 ISO WIRE PENETRAMETER

The ISO Wire Penetrameter shall be 2% of wall thickness and either Fe 6/12 or Fe 10/16, in accordance with Table 11 for the appropriate wall thickness.

When the wire penetrameter is placed across the weld, the diameter of the wire employed shall be based on the specified wall thickness plus the estimated thickness of the weld reinforcement (not to exceed the maximum allowed) at the penetrameter location. When the penetrameter is placed on the base metal, the diameter of the wire employed shall be based on the specified wall thickness.

11.9 FREQUENCY

The penetrameter shall be used to check the sensitivity and adequacy of the radiological technique on each length of pipe, when the fluoroscopic method is used full-length, and on each film when film is used. Each length of pipe shall be held in a stationary position during the adjustment of the radiological technique by use of the penetrameter. Proper definition and sensitivity is attained when individual wires of the ISO penetrameter are clearly discernible.

	Wire D	iameter	Wall Th	nickness
Wire No.	mm	in.	in.	mm
		Fe 6/12		
6	(1.00)	.040	2.000	(50.8)
7	(0.80)	.032	1.600	(40.6)
8	(0.63)	.025	1.250	(31.8)
9	(0.50)	.020	1.000	(25.4)
10	(0.40)	.016	0.800	(20.3)
11	(0.32)	.013	0.650	(15.9)
12	(0.25)	.010	0.500	(12.7)
		Fe 10/16		
10	(0.40)	.016	0.800	(20.3)
11	(0.32)	.013	0.650	(15.9)
12	(0.25)	.010	0.500	(12.7)
13	(0.20)	.008	0.400	(10.2)
14	(0.16)	.006	0.325	(8.3)
15	(0.13)	.005	0.250	(6.4)
16	(0.10)	.004	0.200	(5.1)

Table 11—ISO Wire Penetrameter (Sensitivity 2%)

Note: Always use penetrameter with wall-equivalent wire near center.

11.10 PROCEDURE FOR EVALUATING IN-MOTION OPERATION OF THE FLUOROSCOPE

To evaluate the definition of defects at operational speeds, a pipe section having a minimum wall of 0.375 in. (9.5 mm) shall be used. Series of $1/_{32}$ in. (0.79 mm) holes, as shown in Example 6, Fig. 9, shall be drilled into the center of the weld to a depth of 30% of the total thickness. At least four such series shall be used, spaced one foot apart. As an alternate to the use of the pipe section described above, a penetrameter as described in 11.8 may be used at the option of the manufacturer. The speed of operation shall be adjusted so that the holes in the pipe section, or at least the wire in the ISO penetrameter requested for the nominal wall thickness, are clearly visible to the Operator.

11.11 ACCEPTANCE LIMITS

Radiological examination shall be capable of detecting weld imperfections and defects as described in 11.12 and 11.13.

11.12 IMPERFECTIONS

The maximum acceptable size and distribution of slag inclusion and/or gas pocket discontinuities are shown in Tables 12 and 13, and Figs. 8 and 9.

Note: Unless the discontinuities are elongated, it cannot be determined with assurance whether the radiological indications represent slag inclusions or gas pockets. Therefore, the same limits apply to all circular-type discontinuities.

The important factors to be considered in determining rejection or acceptance limits are size and spacing of discontinuities and the sum of the diameters in an established distance. For simplicity, the distance is established as any 6 in. (152.4 mm) length. Discontinuities of this type usually occur in an aligned pattern; but no distinction is made between aligned or scattered patterns. Also, the distribution pattern may be of assorted sizes.

11.13 DEFECTS

Cracks, lack of complete penetration, or lack of complete fusion, and discontinuities greater in size and/or distribution than shown in Tables 12 and 13, and Figs. 8 and 9, as indicated by radiological examination shall be considered defects.

11.14 WELD REPAIR

Any weld rejected as a result of radiological examination may be repaired at the option of the manufacturer and, if repaired by welding, shall be done in accordance with 11.10, and shall be re-examined radiologically.

11.15 ULTRASONIC AND ELECTROMAGNETIC INSPECTION OF WELDED PIPE

a. Equipment. Any equipment utilizing the ultrasonic or electromagnetic principles and capable of continuous and uninterrupted inspection of the weld seam shall be used. For welds except electric-weld, pipe ends within 4 in. (100 mm) may be inspected radiologically in accordance with 11.4 through 11.14. The equipment shall be checked with an applicable reference standard as described in 11.15.b at least once every working turn to demonstrate its effectiveness and the inspection procedures. The equipment shall be adjusted to produce well-defined indications when the reference standard used by the manufacturer is scanned by the inspection unit in a manner simulating the inspection of the product, and shall be capable of inspecting 1/8 in. (3.2 mm) on either side of the weld line for the entire wall thickness.

b. Reference Standards. Reference standards shall have the same specified diameter and thickness as the product being inspected and may be of any convenient length as determined by the manufacturer. Reference standards shall contain machined notches on the inside surface and on the outside surface, or a drilled hole as shown in Fig. 10, at the option of the manufacturer. The notches shall be parallel to the weld seam, and shall be separated by a distance sufficient to produce separate and distinguishable signals. The 1/8 in. (3.2 mm) hole shall be drilled through the wall and perpendicular to the surface of the reference standard as shown in Fig. 10.

Table 12—Elongated Slag-Inclusion-Type Discontinuities^a (See Fig. 8)

-	1		2		
Maximum	Maximum Dimensions		Minimum Separation		
in.	mm.	in. mm.		6 in. (152.4 mm)	
$\frac{1}{16} \times \frac{1}{2}$	(1.6×12.7)	6	(152.4)	1	
$1/_{16} \times 1/_{4}$	(1.6×6.4)	3	(76.2)	2	
$^{1}/_{16} \times ^{1}/_{8}$	(1.6×3.2)	2	(50.8)	3	

^a Maximum accumulated length of discontinuities in any 6 in. (152.4 mm) shall not exceed 1/2 in. (12.7 mm).

c. Acceptance Limits. Table 14 gives the height of acceptance limit signals in percent of the height of signals produced by reference standards. An imperfection that produces a signal greater than the acceptance limit signal given in Table 14 shall be considered a defect unless it can be demonstrated by the manufacturer that the imperfection does not exceed the provisions of 12.5 and 12.7. Alternatively, indicated imperfections in welded pipe, except electric-welded pipe, may be reinspected by radiological methods in accordance with 11.4 through 11.14.

d. Weld Repair. Defects in the weld, found by ultrasonic or electromagnetic methods of inspection, may be repaired by welding in accordance with 12.8; and the repaired area shall be reexamined nondestructively by the ultrasonic or electromagnetic inspection method, at the option of the manufacturer.



Figure 8—Examples of Maximum Distribution Patterns of Indicated Elongated Slag-Inclusion-Type Discontinuities

	1		2		3	4
Si	ize	Adjace	ent Size	Minimum	Separation	Maximum Number in any
in.	mm	in.	mm	in.	mm	6 in.(152.4 mm)
1/8p	(3.2)	1/8b	(3.2)	2	(50.8)	2
1/8 ^b	(3.2)	1/ ₁₆	(1.6)	1	(25.4)	Varies
1/8p	(3.2)	1/32	(0.8)	1/2	(12.7)	Varies
1/8p	(3.2)	1/64	(0.4)	3/8	(9.5)	Varies
¹ / ₁₆	(1.6)	¹ / ₁₆	(1.6)	1/2	(12.7)	4
¹ / ₁₆	(1.6)	1/32	(0.8)	3/8	(9.5)	Varies
¹ / ₁₆	(1.6)	¹ / ₆₄	(0.4)	1/4	(6.4)	Varies
1/ ₃₂	(0.8)	1/32	(0.8)	1/4c	(6.4)	8
1/32	(0.8)	¹ / ₆₄	(0.4)	³ / ₁₆	(4.8)	Varies
¹ / ₆₄	(0.4)	1/64	(0.4)	1/8	(3.2)	16

Table 13—Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities^a (See Fig. 9)

^aThe sum of the diameters of all discontinuities in any 6 in. (152.4 mm) not to exceed $\frac{1}{4}$ in. (6.4 mm).

^bMaximum size discontinuity for 0.250 in. (6.4 mm) wall and lighter shall be $\frac{3}{32}$ in. (2.4 mm).

^cTwo discontinuities, $1/_{32}$ in. (0.8 mm) or smaller, may be as close as one diameter apart provided they are separated from any other discontinuity by at least $1/_2$ in. (12.7 mm).

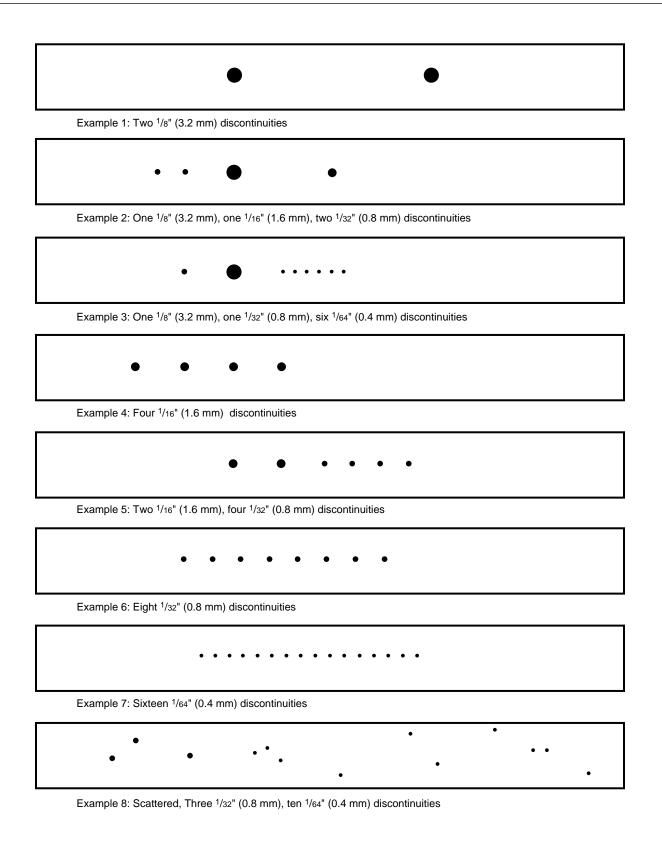


Figure 9—Examples of Maximum Distribution Patterns of Indicated Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities

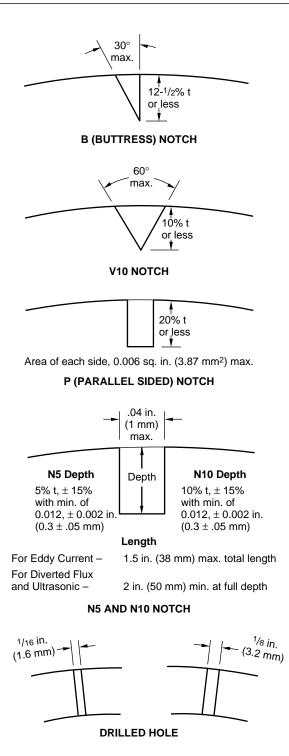


Figure 10—Reference Standards

Notes:

1. The reference standards defined above are convenient standards for calibration of nondestructive testing equipment. The dimensions of these standards should not be construed as the minimum size imperfection detectable by such equipment.

2. Reference standards other than specified above may be used by agreement between the purchaser and manufacturer.

Type	Size	Hole	Acceptance
Notch	in.	mm	Limit Signal,%
N10	1/8	(3.2)	100

11.16 ULTRASONIC AND ELECTROMAGNETIC INSPECTION OF SEAMLESS PIPE

a. Equipment. Any equipment utilizing the ultrasonic or electromagnetic principles and capable of continuous anti uninterrupted inspection of the entire volume of the pipe may be used. Pipe ends within 4 in. (100 mm) may be inspected using hand-held ultrasonic equipment in accordance with 11.16.a and 11.16.b below. The equipment shall be of sufficient sensitivity to indicate defects and shall be checked as described in 11.16.b.

b. Reference Standards. Reference standards having the same nominal diameter and thickness as the product being inspected shall be used to demonstrate the effectiveness of the inspection equipment and procedures at least once every working turn. The reference standard may be of any convenient length as determined by the manufacturer. It shall be scanned by the inspection unit in a manner simulating the inspection of the product. For ultrasonic inspection, the reference standard shall contain a machined notch as specified in Fig. 11. For electromagnetic inspection, the reference standard shall contain either a machined notch or a 1/8 in. (3.2 mm) drilled hole, as specified in Fig. 11, at the option of the manufacturer. The notches shall be one on the outer surface and one on the inner surface of the reference standard and parallel to the longitudinal axis of the pipe or, at the option of the manufacturer, may be oriented at such an angle as to optimize the detection of anticipated defects. The 1/8 in. (3.2 mm) hole shall be drilled radially through the wall of the reference standard. The inspection equipment shall be adjusted to produce a well-defined indication when the reference standard is scanned by the inspection unit.

c. Acceptance Limits. Any imperfection that produces a signal greater than the signal received from the reference standard shall be considered a defect unless it can be demonstrated by the manufacturer that the imperfection does not exceed the provisions of 12.7. Pipe containing defects shall be given one of the dispositions specified in 12.7.

11.17 ULTRASONIC INSPECTION OF CENTRIFUGALLY-CAST PIPE

a. Equipment. Any equipment utilizing the ultrasonic principles and capable of continuous and uninterrupted inspection of the entire volume of the pipe may be used. Pipe ends within 4 in. (100 mm) may be inspected using hand-held ultrasonic equipment in accordance with 11.17.b and 11.17.c.

The equipment shall be of sufficient sensitivity to indicate defects and shall be checked as prescribed in 11.17.b.

b. Reference Standard. A reference standard having the same nominal diameter and thickness as the product being inspected shall be used to demonstrate the effectiveness of the inspection equipment and procedures at least once every working turn. The reference standard may be of any convenient length as determined by the manufacturer. It shall be scanned by the inspection unit in a manner simulating the inspection of the product. The reference standard shall contain a machined notch as specified in Fig. 11.

The notch shall be in the outer surface of the reference standard and parallel to the longitudinal axis of the pipe.

By agreement between purchaser and manufacturer, another notch of identical depth, width, and length shall be located on (1) the inner surface of the reference standard and parallel to the axis of the pipe; (2) in the outer surface of the reference standard and perpendicular to the axis of the pipe; (3) in the inner surface of the reference standard and perpendicular to the axis of the pipe; or (4) any combination thereof. The inspection equipment shall be adjusted to produce a welldefined indication when the reference standard is scanned by the inspection unit.

Depth of notch shall be $10\% (\pm 1.5\%)$ of the nominal wall thickness of the pipe being inspected, but not less than 0.012 in. (0.30 mm).

By agreement between purchaser and manufacturer, the depth of the notch, h, shall be 5% (+0.5%, -0.75%) of the nominal wall thickness of the pipe being inspected, but not less than 0.005 in. (0.13 mm).

The length of the notch at full depth, L, shall be at least twice the width of the scanning head.

Note: The reference standard defined above is a convenient standard for calibration of nondestructive testing equipment. The dimensions of this standard should not be construed as the minimum size imperfection detectable by such equipment.

c. Acceptance Limits. Any imperfection that produces a signal greater than the signal received from the reference standard shall be considered a defect unless it can be demonstrated by the manufacturer that the imperfection does not exceed the provisions of 12.7. Pipe containing defects shall be given one of the dispositions as specified in 12.7.

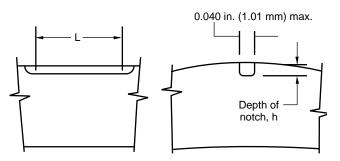


Figure 11—Reference Standard

12 Workmanship, Visual Inspection, and Repair of Defects

12.1 INSPECTION NOTICE

Where the inspector representing the purchaser desires to inspect this pipe or witness these tests, reasonable notice shall be given of the time at which the run is to be made.

12.2 PURCHASER INSPECTION

When stated on the purchase order, the provisions of Appendix F shall apply.

12.3 WORKMANSHIP

Defects of the following types shall be considered poor workmanship. Pipe containing such defects shall be rejected. The manufacturer shall take all reasonable precautions to minimize reoccurring damage to the pipe.

a. Dents. The pipe shall contain no dents greater than 1/4 in. (6.35 mm), measured at the gap between the lowest point of the dent and a prolongation of the original contour of the pipe. The length of the dent in any direction shall not exceed one-half the pipe diameter. All cold-formed dents deeper than 1/8 in. (3.18 mm) with a sharp bottom gouge shall be considered a defect. The gouge may be removed by grinding.

b. Offset of Plate Edges. For submerged-arc and gas metalarc welded pipe with wall thicknesses 0.500 in. (12.7 mm) and less, the radial offset (misalignment) of plate edges in the weld seams shall not be greater than $1/_{16}$ in. (1.59 mm). For submerged-arc and gas metal-arc welded pipe with wall thicknesses over 0.500 in. (12.7 mm), the radial offset shall not be greater than 0.125t or $1/_8$ in. (3.18 mm), whichever is smaller. For electric-welded pipe, the radial offset of plate edges plus flash trim shall be no greater than 0.060 in. (1.52 mm).

c. Out-of-Line Weld Bead in Submerged-Arc and Gas Metal-Arc Welded Pipe. Out-of-line weld bead (off-seam weld) shall not be cause for rejection provided complete penetration and complete fusion have been achieved as indicated by nondestructive examination. When the electric-resistance welding process is used for tack welding, the subsequent submerged-arc or gas metal-arc weld must eliminate all evidence of the tack weld.

d. Height of Outside and Inside Weld Beads—Except ERW. The weld head shall not extend above the prolongation of the original surface of the pipe more than the amount listed below:

Wall Thickness	Maximum Height of Weld Bead
1/2 in. (12.70 mm) and under	$\frac{1}{8}$ in. (3.18 mm)
Over $1/2$ in. (12.70 mm)	$\frac{3}{16}$ in. (4.76 mm)

Weld beads higher than permitted by the requirements of this paragraph may be ground to acceptable limits at the option of the manufacturer.

The height of the weld bead shall in no case come below a prolongation of the surface of the pipe (outside or inside the weld head), except that contouring by grinding, otherwise covered in this specification, shall be permitted.

e. Height of Flash of Electric-Welded Pipe. The outside flash of electric-welded pipe shall be trimmed to an essentially flush condition.

The inside flash of electric-welded pipe shall not extend above the prolongation of the original inside surface of the pipe more than 0.060 in. (1.52 mm).

f. Trim of Inside Flash of Electric-Welded Pipe. The depth of groove resulting from removal of the internal flash of electric-welded pipe shall not be greater than the amount listed below for the various wall thicknesses. Depth of groove is defined as the difference between the wall thickness measured approximately 1 in. (25.4 mm) from the weld line and the remaining wall under the groove.

Wall Thickness	Maximum Depth of Trim
0.150 in. (3.8 mm) and less	0.10 t
0.151 in. (3.8 mm) to	0.015 in. (0.38 mm)
0.301 in. (7.6 mm)	
0.301 in. (7.6 mm) and greater	0.05 t

g. Grinding. When surface conditioning by grinding is performed, it shall be done in a workmanlike manner.

12.4 VISUAL INSPECTION

All finished pipe shall be visually examined and shall be free of defects as defined in 12.5. See 12.6 for repair of defects.

12.5 DEFECTS

a. Cracks and Leaks. All cracks, sweats, and leaks shall be considered defects.

b. Laminations and Inclusions. Any lamination or inclusion extending into the face or bevel of the pipe and having a transverse dimension exceeding 1/4 in. (6.35 mm) is considered a defect. Pipe containing such defects shall be cut back until no lamination or inclusion on the face of the bevel is greater than 1/4 in. (6.35 mm). Any lamination in the body of the pipe that is both:

1. Greater than or equal to $\frac{3}{4}$ in. (19.0 mm) in the minor dimension, and

2. Greater than or equal to $12 \text{ in.}^2 (7742 \text{ mm}^2)$ in area is considered a defect.

Disposition of such defects shall be in accordance with 9.7.5.4, item a or b, of API Spec 5L, 41st edition. No specific inspection by the manufacturer is required unless the purchaser specifies special nondestructive inspection on the purchase order.

Note: A lamination is defined as an internal metal separation creating layers generally parallel to the surface.

c. Arc Burns. Arc burns, defined as localized points of surface melting caused by arcing between electrode or ground and the pipe surface, shall be considered defects.

Note: Contact marks, defined as intermittent marks adjacent to the weld line, resulting from the electrical contact between the electrodes supplying the welding current and the pipe surface, are not defects.

Pipe containing arc burns shall be given one of the following dispositions:

1. Arc burns may be removed by grinding, chipping, or machining. The resulting cavity shall be thoroughly cleaned and checked for complete removal of damaged material by etching with an appropriate reagent.

The cavity may be merged smoothly into the original contour of the pipe by grinding, provided the remaining wall thickness is within the specified limits.

2. The section of pipe containing the arc burn may be cut off within the limits of the requirements on length.

3. Rejected.

d. Undercuts. Undercutting on submerged-arc or gas metalarc welded pipe is the reduction in thickness of the pipe wall adjacent to the weld where it is fused to the surface of the pipe. Undercutting can best be located and measured visually. Minor undercutting on either the inside or the outside of the pipe is permissible without repair or grinding. Minor undercutting is defined as follows:

1. Maximum depth of $1/_{32}$ in. (0.79 mm) with a maximum length of one-half the wall thickness and not more than two such undercuts in any 1 ft. (0.30 m) of the weld length. 2. Maximum depth of $1/_{64}$ in. (0.40 mm), any length.

Undercuts longer than one-half the wall thickness and $\frac{1}{_{64}}$ to $\frac{1}{_{32}}$ in. (0.40 to 0.79 mm) in depth, but not exceeding $12^{1}/_{2}$ % of the specified wall thickness, shall be removed by grinding. Undercuts greater in depth than $\frac{1}{_{32}}$ in. (0.79 mm) shall be considered defects.

e. Other Defects. Any imperfection having a depth greater than $12^{1}/_{2}\%$ of the specified wall thickness, measured from the surface of the pipe, shall be considered a defect.

f. Disposition. Pipe containing a defect must be given one of the following dispositions:

1. The defect may be removed by grinding provided the remaining wall thickness is within specified limits.

2. Repaired in accordance with 12.6 through 12.9.

3. The section of pipe containing the defect may be cut

off within the limits of the requirements on length.

4. Rejected.

12.6 REPAIR OF DEFECTS

a. Seamless Pipe and Parent Metal of Welded Pipe. Weld repairs are prohibited.

b. Weld Seam of Welded Pipe. Defects in the weld seam, except ERW pipe, may be repaired at the discretion of the

manufacturer. Such repairs shall be in accordance with Table 15. The weld seam of electric-resistance welded pipe may be repaired only by agreement between the purchaser and manufacturer. Electric-resistance weld seam repairs shall be in accordance with Table 15.

c. Heat-Treated Pipe. When heat-treated pipe has been repaired by welding, the need for and type of reheat treatment shall be, by agreement between the manufacturer and the purchaser, based on the effect of the repair on the microstructure and properties of the heat-treated pipe.

Table 15—Applicable Repair Procedure

	Paragraph All Grades
Weld Seam of Submerged-Arc Welded Pipe	12.7
Weld Seam of Electric-Resistance and Induction-Welded Pipe	12.8
Weld Seam of Gas Metal-Arc Welded Pipe	12.9

12.7 PROCEDURE FOR REPAIR OF WELD SEAMS OF SUBMERGED-ARC WELDED PIPE

The repair of defects in the weld seam of submerged-arc welded pipe shall conform to the following requirements. Conformance is subject to approval of the purchaser's inspector.

a. The defect shall be completely removed and the cavity thoroughly cleaned.

b. The minimum length of a repair weld shall be 2 in. (50.8 mm). The repair weld shall be made by either semiautomatic or automatic submerged-arc welding; by manual or semi-automatic or automatic gas metal-arc (TIG or MIG) welding; or by manual shielded metal-arc welding using suitable electrodes. The welding procedures and performance shall be qualified in accordance with Appendix A. Shielding gas, containing hydrogen, shall not be used for duplex alloys. c. Each length of repaired pipe shall be hydrostatically-tested in accordance with Sect. 9.

12.8 PROCEDURE FOR REPAIR OF WELD SEAMS OF ELECTRIC-WELD AND INDUCTION-WELDED PIPE

Repair welding of the weld seam of electric-resistance welded pipe and induction welded pipe shall conform to the following requirements and shall include the weld zone which is defined for the purposes of repair as 1/2 in. (12.7 mm) on either side of the fusion line. Conformance to the repair procedure is subject to approval of the purchaser's inspector.

a. The weld zone defect shall be removed completely by chipping and/or grinding and the resultant cavity shall be thoroughly cleaned.

b. The minimum length of repair weld shall be 2 in. (50.8 mm), and individual weld repairs must be separated by at least 10 ft. (3 mm).

c. The repair weld shall be made either by manual or semiautomatic submerged-arc welding gas metal-arc welding, or manual shielded metal-arc welding using suitable electrodes. The metal temperature in the area to be repaired shall be a minimum of 50°F (10°C). The welding procedure and performance shall be qualified in accordance with Appendix A.

d. When a repair weld is made through the full wall thickness, it shall include weld passes made from both the ID and the OD of the pipe. Starts and stops of the ID and OD repair welds shall not coincide.

e. The repair shall be ground to merge smoothly into the original contour of the pipe and shall have a maximum crown of 0.06 in. (1.52 mm).

f. Repair welds shall be inspected by either ultrasonic methods in accordance with 11.15, except that the equipment need not be capable of continuous and uninterrupted operation, or by radiological methods in accordance with 11.4 through 11.14. The choice of these nondestructive testing methods shall be at the option of the manufacturer.

g. Repaired pipe shall be hydrostatically-tested after repaired in accordance with Sect. 9.

12.9 PROCEDURE FOR REPAIR OF WELD SEAM OF GAS METAL-ARC WELDED PIPE

The repair of defects in the weld seam of gas metal-arc welded pipe shall conform to the following requirements. Conformance is subject to the approval of the purchaser's inspector:

a. The defects shall be completely removed and the cavity thoroughly cleaned. The size of the cavity shall be sufficiently large (at least 2 in. [50.8 mm] in length) so as to permit multiple pass repairs wherein starts and stops of individual passes do not coincide.

b. The repair weld shall be made by suitable coated electrodes, semi-automatic or automatic gas metal-arc welding. The welding procedure and Operator performance shall be qualified in accordance with Appendix A.

c. Each length of repaired pipe shall be hydrostatically-tested in accordance with Sect. 9.

13 Marking and Surface Treatment

13.1 MARKING-GENERAL

Pipe manufactured in conformance with this specification, shall be marked by the manufacturer as specified hereinafter.

a. The required marking on pipe shall be as stipulated in 13.2.b. Size, weight per foot, length, and hydrostatic test pressure markings shall be in US Customary units except that for pipe intended for use in countries utilizing the metric system; these markings shall be in metric units or both US Customary and metric units, if so specified on the purchase order. If not so specified, for pipe made and intended for use in countries

utilizing the metric system, these markings may be given in metric units only, at the option of the manufacturer.

13.2 LOCATION OF MARKINGS

The location and sequence of identification markings shall be as follows:

a. 1.900 in. OD and smaller. Die stamped on a metal tag fixed to the bundle, or may be printed on the straps or banding clips used to tie the bundle.

b. Seamless pipe in all other sizes, and welded pipe up to 16-in. OD. Paint stencil on the outside surface starting at a point between 18 and 30 inches from the end of the pipe, and in the sequence shown below, except when agreed between the purchaser and the manufacturer some or all of the markings may be placed on the inside surface in a sequence convenient to the manufacturer.

c. Welded pipe 16-in. OD and larger. Paint stencil on the inside surface starting at a point no less than 6 in. from the end of the pipe in a sequence convenient to the manufacturer, unless otherwise specified by the purchaser.

13.3 SEQUENCE OF MARKINGS

a. Manufacturer's name or mark.

b. Spec $5LC.^6$ "Spec 5LC" should be paint-stenciled when the product is in complete compliance with this specification. Compatible standards products in compliance with multiple compatible standards may be stenciled with the name of each standard.

c. Sizes. The outside diameter in inches followed by the nominal wall thickness in inches.

d. Weight per Foot. For sizes $4^{1/2}$ in. and larger, the tabulated weight in pounds per foot for plain-end pipe (Table 8), shall be paint-stenciled.

e. Grade. The symbols to be used are as follows:

Grade LC30-1812	LC30-1812
Grade LC52-1200	LC52-1200
Grade LC65-2205	LC65-2205
Grade LC65-2506	LC65-2506
Grade LC30-2242	LC30-2242

The symbols to use from grades not listed in Table 4 shall correspond to the designation described in Note a to Table 4.

f. Process of Manufacture. The symbols to be used are as follows:

Seamless pipe	S
Welded pipe	E
Centrifugal Cast pipe	С
g. Heat Treatment. The symbol	ols to be used are as follows:

As-rolled	AR
Quench and Tempered	HQ
Solution Anneal	Η

h. Test Pressure. When the specified hydrostatic test pressure is higher than the tabulated pressure (Table 8), the test pressure in pounds per square inch, preceded by the word TESTED, shall be paint-stenciled.

i. Supplementary Requirement(s). See Appendix D.

Example:

14 inch NPS 0.375 inch wall thickness, Grade LC30-1812, solution annealed, seamless shall be paint-stenciled as follows:

ABCO SPEC 5LC 14 × .375 55.50 LC30-1812 SH

Note: The weight per foot (55.50) is determined by applying the F factor, F = 1.017, to 54.57 from Table 8.

For pipe in sizes 1.900-in. OD and smaller, the identification markings specified in 13.2 shall be placed on the tag, strap, or clip used to tie the bundle.

13.4 LENGTH

In addition to the identification markings stipulated in 13.1 and 13.2, the length shall be marked as follows:

a. For pipe in sizes larger than 1.900-in. OD, the length in feet and tenths of a foot, unless otherwise specified on the purchase order, as measured on the finished pipe shall be paint-stenciled on the outside surface at a place convenient to the manufacturer, except by agreement between the purchaser and the manufacturer, the length marking may be placed inside the pipe at a convenient location.

b. For sizes 1.900-in. OD and smaller, the total length of pipe in the bundle in feet and tenths of a foot (or equivalent metric units), unless otherwise specified on the purchase order, shall be marked on the tag, band, or clip.

13.5 DIE STAMPING

Cold die stamping of all grades plate or pipe not subsequently heat-treated, and all pipe with wall thickness of 0.156 in. and less is prohibited, except that by agreement between the purchaser and the manufacturer and when so specified on the purchase order, pipe or plate may be cold die stamped. The manufacturer at his option may hot die stamp (200°F [93°C] or higher) plate or pipe, cold die stamp plate or pipe if it is subsequently heat-treated. Cold die stamping shall be done with rounded or blunt dies. All die stamping shall be

⁶Users of this specification should note that there is no longer a requirement for marking a product with the API monogram. The American Petroleum Institute continues to license use of the monogram on products covered by this specification but it is administered by the staff of the Institute separately from the specification. The policy describing licensing and use of the monogram is contained in Appendix G herein. No other use of the monogram is permitted.

at least 1 in. (25 mm) from the weld for all grades. Etching or marking with a vibrograph are permitted in lieu of cold die stamping.

13.6 SURFACE TREATMENT

The corrosion resistant behavior of these alloys is adversely affected by poor surface condition. Therefore, scale spatter and annealing surface residues shall be removed by blasting or pickling, or a combination of both.

13.7 PIPE PROCESSOR MARKINGS

Pipe heat-treated by a processor other than the manufacturer shall be marked as stipulated in 13.1, 13.2, 13.3, 13.4, and 13.5. The processor shall remove any identity which is not indicative of the new condition of the product as a result of heat-treating (i.e. prior grade identity, original pipe manufacturer's name or logo).

APPENDIX A—REPAIR WELDING PROCEDURE

A.1 General

All repair welds shall be made in the flat position according to a qualified procedure and by a welding machine operator (hereafter operator) or repair welder qualified in a flat position as specified in A.2. Repair welds may be made by one of the following methods:

- a. Automatic submerged arc.
- b. Automatic or semi-automatic gas metal arc.
- c. Manual shielded metal-arc using low hydrogen electrodes.

All welding materials shall be properly handled and stored in accordance with the manufacturer's recommendations so as to preclude moisture or other contamination. Test welds may be made on either plate stock or pipe stock, at the option of the manufacturer.

The manufacturer shall maintain a record of the welding procedure and procedure qualification test results; copies of the welding procedure specification and procedure qualification record shall be provided to the purchaser upon request.

A.2 Repair Welding Procedure Qualification

Welding procedures shall be qualified by preparing and testing welds in accordance with this Appendix. At the option of the manufacturer, the tests specified in the latest issue of the ASME *Boiler and Pressure Vessel Code*, Section IX, may be substituted herein. For the purpose of this Appendix, the term "automatic welding" includes both machine welding and automatic welding as defined in the ASME *Boiler and Pressure Vessel Code*, Section IX.

A.2.1 ESSENTIAL VARIABLES

An existing procedure shall not be applicable and new procedure must be qualified when any of the following essential variables is changed beyond the stated limits.

A.2.1.1 Welding Process

a. A change in the welding process (i.e. submerged-arc to gas-metal arc).

b. A change in the method (i.e., manual to semi-automatic).

A.2.1.2 Pipe Material

a. A change in grade category. When different alloying systems are used within one grade category, each alloying composition must be separately qualified. Grade categories are as follows:

1. SMYS 42,000 psi or less.

2. SMYS greater than 42,000 psi but less than 65,000 psi.

3. Each grade with SMYS of 65,000 psi or greater.

b. Within each grade category, a thicker material than the material qualified.

c. Within the grade category and thickness range, a carbon equivalent (CE) based on product analysis for the material to be repaired which is more than 0.04% greater than the CE of the material qualified (See equation A-1).

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$
 (A-1)

A.2.1.3 Welding Materials

a. A change in filler metal classification.

b. A change in electrode diameter.

c. A change of more than 5% in the composition of shielding gas.

d. A change of more than 10% in the flow rate of shielding gas.

e. A change in submerged-arc welding flux from one designation to another.

A.2.1.4 Welding Parameters

- a. A change in the type of current (i.e., AC vs DC).
- b. A change in polarity.

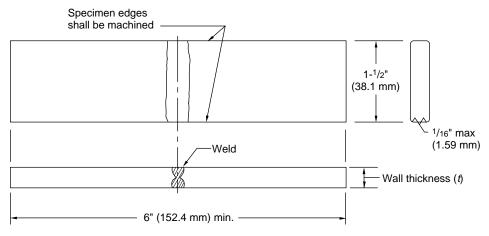
c. For automatic and semi-automatic welding, schedules of welding current, voltage, and speed may be established to cover ranges of wall thicknesses. Within the schedule, appropriately selected points shall be tested to qualify the entire schedule. Thereafter, a new qualification is required if there is a deviation from the qualified schedule greater than:

- 1. 10% in amperage.
- 2. 7% in voltage.
- 3. 10% in travel speed for automatic welding.

A.2.1.5 Weld Bead

For manual and semi-automatic welding, a change in bead width greater than 50%.

A.2.1.6 Preheat and Post-Weld Heat Treat


a. Repair welding at a pipe temperature lower than the pipe temperature of the qualification test.

b. The addition or deletion of post-weld heat treatment.

A.2.2 MECHANICAL TESTING

A.2.2.1 Number of Tests

Two specimens of each type are required from each test.

Weld reinforcement shall be removed from both faces

Figure A-1—Transverse Tensile Test Specimen

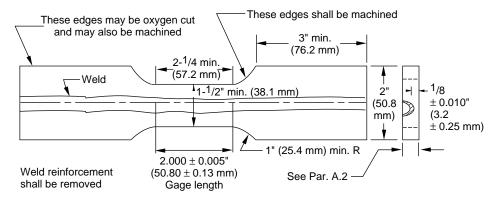
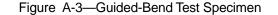



Figure A-2—Tensile-Elongation Test Specimen

Weld reinforcement shall be removed

A.2.2.2 Transverse Tensile Test

The transverse tensile test specimens shall be approximately 1.5 in. (38 mm) wide and shall have the transverse butt-weld perpendicular to the longitudinal axis at the center of the test specimen (see Fig. A-1 or Fig. 7). The weld reinforcement shall be removed from both faces. The ultimate tensile strength shall be at least equal to the minimum specified for the pipe grade.

A.2.2.3 Longitudinal Tensile-Elongation Test

The longitudinal tensile-elongation test specimens shall conform to Fig. A-2. The weld shall be made in a groove as shown. The elongation after complete rupture of each test specimen in tension shall be at least equal to the minimum elongation specified for the pipe grade.

A.2.2.4 Transverse Guided-Bend Test

The transverse guided-bend test specimens shall conform to Fig. A-3. The weld shall be made in a groove as shown. Each specimen shall be placed on the die with the weld at mid-span, and shall be bent approximately 180° in a jig, substantially in accordance with Fig. A-4 and Table A-1, with the exposed surface of the weld in tension. The bend test shall be considered acceptable if no crack or other defect exceeding 1/8 in. (3.18 mm) in any direction is present in the weld metal or base metal after bending. Cracks which both originate along the edges of the specimen during testing and measure less than 1/4 in. (6.35 mm) in all directions shall not be considered.

A.2.2.5 Nick-Break Test

The nick-break specimens shall conform to Fig. A-5. The weld shall be made in a groove as shown. Each specimen shall be saw-notched from both edges at the center of the

weld and shall be broken by pulling or hammer blows at the center of one end. The exposed surface of the specimen shall be visually examined, and shall be considered acceptable if it meets the following criteria:

a. No gas pockets exceeding $1/16}$ in. (1.59 mm) in any direction.

b. Not more than one gas pocket of any size for specified wall thicknesses of 0.250 in. (6.35 mm) and less.

c. Not more than two gas pockets of any size for specified wall thicknesses of 0.500 in. (12.7 mm) or less, but greater than 0.250 in. (6.35 mm).

d. Not more than three gas pockets of any size for specified wall thicknesses greater than 0.500 in. (12.7 mm).

e. To be acceptable, slag inclusions must be separated by at least 2 inches (12.7 mm) of sound metal and shall appear no greater than $1/_{16}$ in. (1.59 mm) in width or $1/_{16}$ in. (4.76 mm) in length.

A.3 Welding Personnel Performance Qualification

A.3.1 QUALIFICATION

Each repair welder and operator is required to qualify. A repair welder or operator qualified on one grade category is qualified for any lower grade category provided the same welding process is used.

A.3.2 TESTING

For qualification, a repair welder or operator must produce welds which are acceptable in the following tests:

A.3.2.1 Film radiographic examination per Section 12 of this specification.

A.3.2.2 Two transverse guided-bend tests per A.2.2.4 of this supplement.

1	2	3	4	5	6
			Pipe Grade		
	A, B & X42	X46	X52 & X56	X60 & X65	X70 & X80
Radius of male member, RA	3 <i>t</i>	$3^{1}/_{2}t$	4 <i>t</i>	$4^{1}/_{2}t$	5 <i>t</i>
Radius of female member, R _B	$4t + \frac{1}{16}$ "	$4^{1}/_{2}t + {^{1}}/_{16}$ "	$5t + \frac{1}{16}$ "	$5^{1}/_{2}t + {^{1}}/_{16}$ "	$6t + \frac{1}{16}$ "
	4t + 1.6 mm	$4^{1/2}t + 1.6 \text{ mm}$	5t + 1.6 mm	$5^{1/2}t + 1.6 \text{ mm}$	6t + 1.6 mm
Width of male member, A	6 <i>t</i>	7 <i>t</i>	8 <i>t</i>	9t	10 <i>t</i>
Width of groove in female member, B	8 ¹ /8"	9t + 1/8''	$10t + \frac{1}{8}$ "	$11t + \frac{1}{8}$ "	$12t + \frac{1}{8}$ "
	8 <i>t</i> +3.2 mm	9t + 3.2 mm	10t + 3.2 mm	11t + 3.2 mm	12t + 3.2 mm

Table A-1—Guided-Bend Test Jig Dimensions (See Fig. A-4)

Notes:

1. t = specified wall thickness of the pipe.

2. For intermediate grades of pipe, the above dimensions of the bending jig shall conform to those shown for the next lower grade or shall be proportional thereto.

A.3.2.3 Two nick-break tests per A.2.2.5 of this supplement.

A.3.3 TEST FAILURES

If one or more of the tests in A.3.2 fail to meet the specified requirements, the welder or operator may make one additional qualification weld. If that weld fails one or more of the tests in A.3.2, the welder or operator is disqualified. No further retests shall be permitted until the welder has completed additional training.

A.3.4 REQUALIFICATION

Requalification in accordance with A.3.1 is required under the following circumstances:

A.3.4.1 One year has elapsed since the last prior applicable qualification.

A.3.4.2 The individual has not been welding using qualified procedures for a period of three months.

A.3.4.3 There is reason to question the individual's ability.

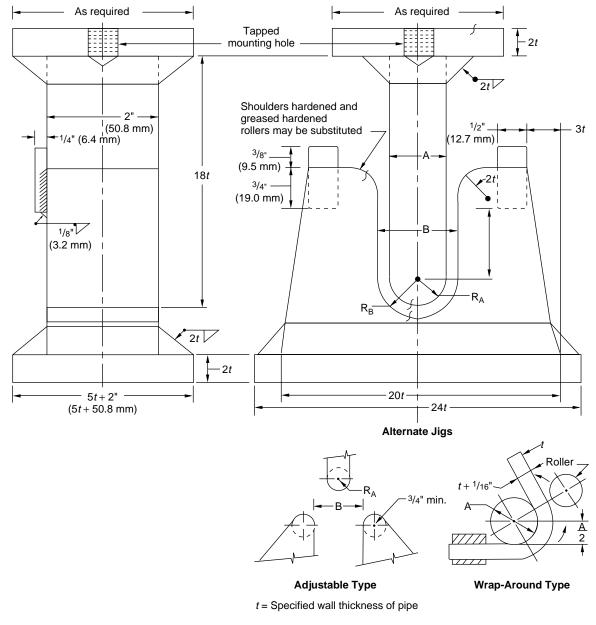


Figure A-4—Jig for Guided-Bend Test

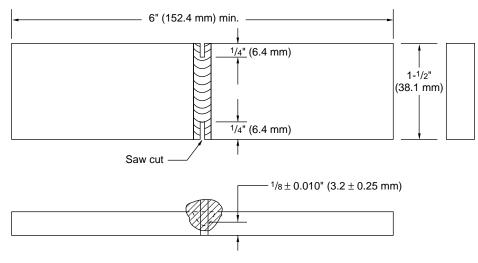


Figure A-5—Nick-Break Test Specimen

APPENDIX B—MINIMUM ELONGATION VALUES

	Grade Constant	LC30-1812 C = 26.5	LC52-1200 C = 21.2	LC65-2205 C = 26.5	LC65-2206 C = 26.5	LC30-224 C = 26.5
Sec. Area	A^0.2	e	e	е	е	e
0.75 over	0.94	25.0	27.0	25.0	25.0	30.0
0.74	0.94	25.0	27.0	25.0	25.0	30.0
0.73	0.94	25.0	27.0	25.0	25.0	30.0
0.72	0.94	25.0	27.0	25.0	25.0	30.0
0.71	0.93	24.5	27.0	24.5	24.5	29.5
0.70	0.93	24.5	26.5	24.5	24.5	29.5
0.69	0.93	24.5	26.5	24.5	24.5	29.5
0.68	0.93	24.5	26.5	24.5	24.5	29.5
0.67	0.92	24.5	26.5	24.5	24.5	29.5
0.66	0.92	24.5	26.5	24.5	24.5	29.5
0.65	0.92	24.5	26.5	24.5	24.5	29.0
0.64	0.91	24.0	26.5	24.0	24.0	29.0
0.63	0.91	24.0	26.0	24.0	24.0	29.0
0.62	0.91	24.0	26.0	24.0	24.0	29.0
0.61	0.91	24.0	26.0	24.0	24.0	29.0
0.60	0.90	24.0	26.0	24.0	24.0	28.5
0.59	0.90	24.0	26.0	24.0	24.0	28.5
0.58	0.90	24.0	26.0	24.0	24.0	28.5
0.57	0.89	23.5	25.5	23.5	23.5	28.5
0.56	0.89	23.5	25.5	23.5	23.5	28.5
0.55	0.89	23.5	25.5	23.5	23.5	28.5
0.54	0.88	23.5	25.5	23.5	23.5	28.0
0.53	0.88	23.5	25.5	23.5	23.5	28.0
0.52	0.88	23.5	25.0	23.5	23.5	28.0
0.51	0.87	23.0	25.0	23.0	23.0	28.0
0.50	0.87	23.0	25.0	23.0	23.0	27.5
0.49	0.87	23.0	25.0	23.0	23.0	27.5
0.48	0.86	23.0	25.0	23.0	23.0	27.5
0.47	0.86	23.0	24.5	23.0	23.0	27.5
0.46	0.86	22.5	24.5	22.5	22.5	27.0
0.45	0.85	22.5	24.5	22.5	22.5	27.0
0.44	0.85	22.5	24.5	22.5	22.5	27.0
0.43	0.84	22.5	24.5	22.5	22.5	27.0
0.42	0.84	22.5	24.0	22.5	22.5	26.5
0.41	0.84	22.0	24.0	22.0	22.0	26.5
0.40	0.83	22.0	24.0	22.0	22.0	26.5

Table B-1—Minimum Elogation Values

	10010		an Elogation			
		LC30-1812	LC52-1200	LC65-2205	LC65-2206	LC30-2242
	Grade Constant	C = 26.5	C = 21.2	C = 26.5	C = 26.5	C = 26.5
0.39	0.83	22.0	24.0	22.0	22.0	26.5
0.38	0.82	22.0	23.5	22.0	22.0	26.0
0.37	0.82	21.5	23.5	21.5	21.5	26.0
0.36	0.82	21.5	23.5	21.5	21.5	26.0
0.35	0.81	21.5	23.5	21.5	21.5	26.0
0.34	0.81	21.5	23.0	21.5	21.5	25.5
0.33	0.80	21.0	23.0	21.0	21.0	25.5
0.32	0.80	21.0	23.0	21.0	21.0	25.5
0.31	0.79	21.0	22.5	21.0	21.0	25.0
0.30	0.79	21.0	22.5	21.0	21.0	25.0
0.20	0.79	20.5	22.5	20.5	20.5	25.0
0.29	0.78	20.5	22.5	20.5	20.5	25.0
0.28	0.78 0.77	20.5 20.5	22.5 22.0	20.5 20.5	20.5 20.5	24.5 24.5
0.27						24.5
0.26	0.76	20.0	22.0	20.0	20.0	24.5
0.25	0.76	20.0	22.0	20.0	20.0	24.0
0.24	0.75	20.0	21.5	20.0	20.0	24.0
0.23	0.75	20.0	21.5	20.0	20.0	23.5
0.22	0.74	19.5	21.0	19.5	19.5	23.5
0.21	0.73	19.5	21.0	19.5	19.5	23.5
0.20	0.72	19.0	21.0	19.0	19.0	23.0
0.19	0.72	19.0	20.5	19.0	19.0	23.0
0.18	0.71	19.0	20.5	19.0	19.0	22.5
0.17	0.70	18.5	20.0	18.5	18.5	22.5
0.16	0.69	18.5	20.0	18.5	18.5	22.0
0.15	0.68	18.0	19.5	18.0	18.0	22.0
0.14	0.67	18.0	19.5	18.0	18.0	21.5
0.14	0.66	17.5	19.0	17.5	17.5	21.0
0.13	0.65	17.5	19.0	17.5	17.5	21.0
0.12	0.64	17.0	18.5	17.0	17.0	20.5
0.11	0.63	16.5	18.0	16.5	16.5	20.0
0.10	0.05	10.5	10.0	10.5	10.5	20.0
0.09	0.62	16.5	17.5	16.5	16.5	19.5
0.08	0.60	16.0	17.5	16.0	16.0	19.0
0.07	0.59	15.5		15.5	15.5	18.5
0.06	0.57	15.0	—	15.0	15.0	18.0
0.05	0.55	14.5		14.5	14.5	17.5
0.04	0.53	14.0		14.0	14.0	16.5
0.03	0.50	13.0		13.0	13.0	16.0
0.02	0.46	12.0		12.0	12.0	14.5
0.01	0.40	10.5		10.5	10.5	12.5
0.01	0.10	10.0		10.0	10.0	

Table B-1—Minimum Elogation Values (Continued)

APPENDIX C—METRIC TABLES

The following tables provide the metric equivalents of US Customary values for dimensions, weights, and test pressures.

	S	ize											
Nom. in.	Desig- nation	Outside I <i>L</i>	,	Plain-End Weight, <i>w_{pe}</i>		Wall Th	Wall Thickness t		Inside Diameter, d		Test Pressure, min. kPa × 100		
in.		in.	mm	lb/ft	kg/m	in.	mm	in.	mm	LC30	LC52	LC65	
1	Std	1.315	33.4	1.68	2.52	0.133	3.4	1.049	26.6	48	_	104	
1	XS	1.315	33.4	2.17	3.21	0.179	4.5	0.957	24.4	59		128	
1	XXS	1.315	33.4	3.66	5.45	0.358	9.1	0.599	15.2	69	—	150	
11/4	Std	1.660	42.2	2.27	3.43	0.140	3.6	1.380	35.0	83	_	180	
$1^{1}/4$	XS	1.660	42.2	3.00	4.51	0.191	4.9	1.278	32.4	124		207	
11/4	XXS	1.660	42.2	5.21	7.77	0.382	9.7	0.896	22.8	152		207	
$1^{1}/_{2}$	Std	1.900	48.3	2.72	4.07	0.145	3.7	1.610	40.9	83	_	180	
$1^{1/2}$	XS	1.900	48.3	3.63	5.43	0.200	5.1	1.500	38.1	124		207	
$1^{1/2}$	XXS	1.900	48.3	6.41	9.58	0.400	10.2	1.100	27.9	152		207	

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures

^aOutside diameter and wall thickness dimensions shown are subject to tolerances. Inside diameters are nominal, and are given here for information only.

^bWeights shown are for carbon steel. To obtain the weight for the alloy ordered use the appropriate correction factor from 10.1.

	ze: le Dia., D		d Weight,		$\begin{array}{c} \text{Inside} \\ \text{Wall Thickness} \\ t \\ \end{array} \begin{array}{c} \text{Dia.,} \\ d \end{array}$			Test Pressure psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65
2.375	60.3	2.03	3.01	0.083	2.1	56.1	108	187	207
2.375	60.3	2.64	3.97	0.109	2.8	54.7	144	207	207
2.375	60.3	3.00	4.51	0.125	3.2	53.9	165	207	207
2.375	60.3	3.36	5.03	0.141	3.6	53.1	185	207	207
2.375	60.3	3.65	5.42	0.154	3.9	52.5	201	207	207
2.375	60.3	4.05	6.07	0.172	4.4	51.5	207	207	207
2.375	60.3	4.39	6.57	0.188	4.8	50.7	207	207	207
2.375	60.3	5.02	7.43	0.218	5.5	49.3	207	207	207
2.375	60.3	5.67	8.51	0.250	6.4	47.5	207	207	207
2.375	60.3	6.28	9.31	0.281	7.1	46.1	207	207	207
2.375	60.3	9.03	13.47	0.436	11.1	38.1	207	207	207
2.875	73.0	2.47	3.67	0.083	2.1	68.8	89	155	193
2.875	73.0	3.22	4.85	0.109	2.8	67.4	119	206	207
2.875	73.0	3.67	5.51	0.125	3.2	66.6	136	207	207
2.875	73.0	4.12	6.16	0.141	3.6	65.8	153	207	207
2.875	73.0	4.53	6.81	0.156	4.0	65.0	170	207	207
2.875	73.0	4.97	7.44	0.172	4.4	64.2	187	207	207
2.875	73.0	5.40	8.07	0.188	4.8	63.4	204	207	207
2.875	73.0	5.79	8.69	0.203	5.2	62.6	207	207	207

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

^aOutside diameter and wall thickness dimensions shown are subject to tolerances. Inside diameters are nominal, and are given here for information only.

Outsic	ize: de Dia., D		d Weight,	Wall Th	iickness	Inside Dia., d		est Pressur psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65
2.875	73.0	6.13	9.16	0.216	5.5	62.0	207	207	207
2.875	73.0	7.01	10.51	0.250	6.4	60.2	207	207	207
2.875	73.0	7.66	11.39	0.276	7.0	59.0	207	207	207
2.875	73.0	13.69	20.37	0.552	14.0	45.0	207	207	207
3.5	88.9	3.03	4.50	0.083	2.1	84.7	73	127	159
3.5	88.9	3.95	5.95	0.109	2.8	83.3	98	169	207
3.5	88.9	4.51	6.76	0.125	3.2	82.5	112	194	207
3.5	88.9	5.06	7.57	0.141	3.6	81.7	126	207	207
3.5	88.9	5.57	8.37	0.156	4.0	80.9	140	207	207
3.5	88.9	6.11	9.17	0.172	4.4	80.1	154	207	207
3.5	88.9	6.65	9.95	0.188	4.8	79.3	168	207	207
3.5	88.9	7.58	11.31	0.216	5.5	77.9	192	207	207
3.5	88.9	8.68	13.02	0.250	6.4	76.1	207	207	207
3.5	88.9	9.66	14.32	0.281	7.1	74.7	207	207	207
3.5	88.9	10.25	15.24	0.300	7.6	73.7	207	207	207
3.5	88.9	18.58	27.63	0.600	15.2	58.5	207	207	207
4	101.6	3.47	5.15	0.083	2.1	97.4	64	111	139
4	101.6	4.53	6.82	0.109	2.8	96.0	86	148	185
4	101.6	5.17	7.76	0.125	3.2	95.2	98	169	207
4	101.6	5.81	8.70	0.125	3.6	94.4	110	191	207
4	101.6	6.40	9.63	0.141	4.0	93.6	122	207	207
4	101.6	7.03	10.55	0.150	4.4	92.8	134	207	207
4	101.6	7.65	11.46	0.172	4.8	92.0	147	207	207
4	101.6	9.11	13.48	0.188	4.8 5.7	90.2	147	207	207
4	101.6	10.01	15.02	0.220	5.7 6.4	88.8	195	207	207
4	101.6	11.16	16.55	0.230	0.4 7.1	87.4	207	207	207
4	101.6	12.50	18.68	0.231	8.1	85.4	207	207	207
4.5	114.3	3.92	5.81	0.083	2.1	110.1	57	99	124
4.5	114.3	5.84	8.77	0.125	3.2	107.9	87	151	188
4.5	114.3	6.56	9.83	0.125	3.6	107.1	98	169	207
4.5	114.3	7.24	10.88	0.141	4.0	106.3	109	188	207
4.5	114.3	7.95	11.92	0.150	4.4	105.5	119	207	207
4.5	114.3	8.66	12.96	0.172	4.8	104.7	130	207	207
4.5	114.3	9.32	13.99	0.203	5.2	103.9	130	207	207
4.5	114.3	10.01	15.01	0.203	5.6	103.1	141	207	207
4.5 4.5	114.3 114.3	10.01	15.01	0.219	5.0 6.0	102.3	152	207	207
4.5 4.5	114.3 114.3	10.79	10.02	0.257	6.0 6.4	102.5	103	207	207
4.5	114.3	12.66	18.77 20.73	0.281	7.1	100.1	193 207	207	207
4.5	114.3	13.96	20.73	0.312	7.9	98.5	207	207	207
4.5	114.3	14.98	22.42	0.337	8.6	97.1	207	207	207
4.5	114.3	19.00	28.25	0.438	11.1	92.1	207	207	207
4.5	114.3	22.51	33.56	0.531	13.5	87.3	207	207	207
4.5	114.3	27.54	40.99	0.674	17.1	80.1	207	207	207

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Siz Outsid <i>L</i>			Plain-End Weight, w _{pe}		ickness	Inside Dia., <i>d</i>		est Pressur psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65
5.563	141.3	4.86	7.21	0.083	2.1	137.1	46	80	100
5.563	141.3	7.26	10.90	0.125	3.2	134.9	70	122	152
5.563	141.3	9.01	13.54	0.156	4.0	133.3	88	152	190
5.563	141.3	10.79	16.16	0.188	4.8	131.7	105	183	207
5.563	141.3	12.50	18.74	0.219	5.6	130.1	123	207	207
5.563	141.3	14.62	21.92	0.258	6.6	128.1	145	207	207
5.563	141.3	15.85	23.50	0.281	7.1	127.1	156	207	207
5.563	141.3	17.50	25.99	0.312	7.9	125.5	173	207	207
5.563	141.3	19.17	28.45	0.344	8.7	123.9	191	207	207
5.563	141.3	20.78	30.88	0.375	9.5	122.3	207	207	207
5.563	141.3	27.04	40.28	0.500	12.7	115.9	207	207	207
5.563	141.3	32.96	49.17	0.625	15.9	109.5	207	207	207
5.563	141.3	38.55	57.56	0.750	19.1	103.1	207	207	207
6.625	168.3	5.80	8.61	0.083	2.1	164.1	39	67	84
6.625	168.3	7.59	11.43	0.109	2.8	162.7	52	89	112
6.625	168.3	8.68	13.03	0.125	3.2	161.9	59	102	128
6.625	168.3	9.76	14.62	0.141	3.6	161.1	66	115	144
6.625	168.3	10.78	16.21	0.156	4.0	160.3	74	128	160
6.625	168.3	11.85	17.78	0.172	4.4	159.5	81	141	176
6.625	168.3	12.92	19.35	0.188	4.8	158.7	88	153	192
6.625	168.3	13.92	20.91	0.203	5.2	157.9	96	166	207
6.625	168.3	14.98	22.47	0.219	5.6	157.1	103	179	207
6.625	168.3	17.02	25.55	0.250	6.4	155.5	118	205	207
6.625	168.3	18.97	28.22	0.280	7.1	154.1	131	203	201
6.625	168.3	21.04	31.25	0.312	7.9	152.5	146	207	20
6.625	168.3	23.08	34.24	0.344	8.7	150.9	160	207	207
6.625	168.3	25.03	37.20	0.375	9.5	149.3	175	207	207
6.625	168.3	28.57	42.67	0.432	11.0	146.3	203	207	207
6.625	168.3	32.71	48.73	0.500	12.7	140.9	203	207	207
6.625	168.3	36.39	54.31	0.562	14.3	139.7	207	207	207
6.625	168.3	40.05	59.76	0.625	15.9	136.5	207	207	207
6.625	168.3	45.35	67.69	0.719	18.3	130.5	207	207	207
6.625	168.3	47.06	70.27	0.750	19.1	130.1	207	207	207
6.625	168.3	53.73	79.98	0.875	22.2	123.9	207	207	207
8.625	219.1	11.35	17.04	0.125	3.2	212.7	45	79	98
8.625	219.1	14.11	21.22	0.156	4.0	211.1	57	98	123
8.625	219.1	16.94	25.37	0.188	4.8	209.5	68	118	147
8.625	219.1	18.26	27.43	0.203	5.2	209.5	74	128	160
8.625	219.1	19.66	29.48	0.205	5.6	207.9	79	137	172
8.625	219.1	22.36	33.57	0.21)	5.0 6.4	207.9	91	157	196
8.625	219.1	22.30	36.61	0.230	7.0	200.5	99	172	20
8.625	219.1	24.70	41.14	0.312	7.9	203.3	112	194	20
8.625	219.1	28.55	42.65	0.312	8.2	203.3	112	201	20
8.625	219.1	30.42	45.14	0.322	8.2 8.7	202.7	123	201	20

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Siz Outsid <i>L</i>	e Dia.,	Plain-Ene w	-	Wall Th		Inside Dia., d		est Pressur psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65
8.625	219.1	33.04	49.10	0.375	9.5	200.1	135	207	207
8.625	219.1	38.30	56.94	0.438	11.1	196.9	157	207	207
8.625	219.1	43.39	64.64	0.500	12.7	193.7	180	207	207
8.625	219.1	48.40	72.22	0.562	14.3	190.5	203	207	207
8.625	219.1	53.40	79.67	0.625	15.9	187.3	207	207	207
8.625	219.1	60.71	90.62	0.719	18.3	182.5	207	207	207
8.625	219.1	63.08	94.20	0.750	19.1	180.9	207	207	207
8.625	219.1	67.76	100.84	0.812	20.6	177.9	207	207	207
8.625	219.1	72.42	107.79	0.875	22.2	174.7	207	207	207
8.625	219.1	81.44	121.33	1.000	25.4	168.3	207	207	207
10.75	273.1	17.65	26.54	0.156	4.0	265.1	52		112
10.75	273.1	21.21	31.76	0.188	4.8	263.5	62		134
10.75	273.1	22.87	34.35	0.203	5.2	262.7	67	_	145
10.75	273.1	24.63	36.94	0.219	5.6	261.9	72		156
10.75	273.1	28.04	42.09	0.250	6.4	260.3	82	_	179
10.75	273.1	31.20	46.57	0.279	7.1	258.9	91	_	198
10.75	273.1	34.24	51.03	0.307	7.8	257.5	100		207
10.75	273.1	38.23	56.72	0.344	8.7	255.7	112		207
10.75	273.1	40.48	60.50	0.365	9.3	254.5	120		201
10.75	273.1	48.24	71.72	0.438	11.1	250.9	143		207
10.75	273.1	54.74	81.55	0.500	12.7	247.7	164	_	207
10.75	273.1	61.15	91.26	0.562	14.3	244.5	184	_	207
10.75	273.1	67.58	100.85	0.625	15.9	241.3	205	_	201
10.75	273.1	77.03	114.99	0.719	18.3	236.5	207	_	201
10.75	273.1	86.18	128.27	0.812	20.6	231.9	207	_	207
10.75	273.1	92.28	137.36	0.875	22.2	228.7	207	_	207
10.75	273.1	98.30	146.32	0.938	23.8	225.5	207	_	207
10.75	273.1	104.13	155.15	1.000	25.4	222.3	207		207
10.75	273.1	126.83	189.22	1.250	31.8	209.5	207		207
12.75	323.9	23.11	34.67	0.172	4.4	315.1	48	_	103
12.75	323.9	25.22	37.77	0.188	4.8	314.3	52		11,
12.75	323.9	27.20	40.87	0.203	5.2	313.5	56		12
12.75	323.9	29.31	43.96	0.219	5.6	312.7	61		132
12.75	323.9	33.38	50.11	0.250	6.4	311.1	69		15
12.75	323.9	37.42	55.47	0.281	7.1	309.7	77		16
12.75	323.9	41.45	61.56	0.312	7.9	308.1	86	_	18
12.75	323.9	43.77	65.35	0.330	8.4	307.1	91	_	19
12.75	323.9	45.58	67.62	0.344	8.7	306.5	94		20
12.75	323.9	49.56	73.65	0.375	9.5	304.9	103		20
12.75	323.9	53.52	79.65	0.406	10.3	303.3	112		20
12.75	323.9	57.59	85.62	0.438	11.1	301.7	121		20
12.75	323.9	65.42	97.46	0.500	12.7	298.5	138	_	20
12.75	323.9	73.15	109.18	0.562	14.3	295.3	155		20
12.75	323.9	80.93	120.76	0.625	15.9	292.1	173	_	20

Table C-1—C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsic	ze: le Dia., D	Plain-End W	d Weight, _{pe}	Wall Th		Inside Dia., <i>d</i>		est Pressur psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC6
12.75	323.9	88.63	132.23	0.688	17.5	288.9	190		207
12.75	323.9	96.12	143.56	0.750	19.1	285.7	207	_	207
12.75	323.9	103.53	154.08	0.812	20.6	282.7	207	_	207
12.75	323.9	110.97	165.17	0.875	22.2	279.5	207	_	207
12.75	323.9	118.33	176.13	0.938	23.8	276.3	207	_	20
12.75	323.9	125.49	186.97	1.000	25.4	273.1	207	_	20
12.75	323.9	132.57	197.68	1.062	27.0	269.9	207	_	20
12.75	323.9	139.67	208.27	1.125	28.6	266.7	207	_	20
12.75	323.9	153.53	229.06	1.250	31.8	260.3	207		207
14	355.6	27.73	41.52	0.188	4.8	346.0	47		10.
14	355.6	29.91	44.93	0.203	5.2	345.2	51	—	11
14	355.6	30.93	45.78	0.210	5.3	345.0	52	—	11
14	355.6	32.23	48.33	0.219	5.6	344.4	55	_	12
14	355.6	36.71	55.11	0.250	6.4	342.8	63	_	13
14	355.6	41.17	61.02	0.281	7.1	341.4	70	_	15
14	355.6	45.61	67.74	0.312	7.9	339.8	78	_	16
14	355.6	50.17	74.42	0.344	8.7	338.2	86	_	18
14	355.6	54.57	81.08	0.375	9.5	336.6	94	_	20
14	355.6	58.94	87.71	0.406	10.3	335.0	102	_	20
14	355.6	63.44	94.30	0.438	11.1	333.4	110	_	20
14	355.6	67.78	100.86	0.469	11.9	331.8	118	_	20
14	355.6	72.09	107.39	0.500	12.7	330.2	126	_	20
14	355.6	80.66	120.36	0.562	14.3	327.0	141	_	20
14	355.6	89.28	133.19	0.625	15.9	323.8	157	_	20
14	355.6	97.81	145.91	0.688	17.5	320.6	173	_	20
14	355.6	106.13	158.49	0.750	19.1	317.4	189	_	20
14	355.6	114.37	170.18	0.812	20.6	314.4	204	_	20
14	355.6	122.65	182.52	0.875	22.2	311.2	207	_	20
14	355.6	130.85	194.74	0.938	23.8	308.0	207	_	20
14	355.6	138.84	206.83	1.000	25.4	304.8	207	_	20
14	355.6	146.74	218.79	1.062	27.0	301.6	207	_	20
14	355.6	154.69	230.63	1.125	28.6	298.4	207	_	20
14	355.6	170.21	253.92	1.250	31.8	292.0	207	—	20
16	406.4	31.75	47.54	0.188	4.8	396.8	42		9
16	406.4	34.25	51.45	0.203	5.2	396.0	45		9
16	406.4	36.91	55.35	0.219	5.6	395.2	48	_	10
6	406.4	42.05	63.13	0.250	6.4	393.6	55	_	12
16	406.4	47.17	69.91	0.281	7.1	392.2	61	_	13
16	406.4	52.27	77.63	0.312	7.9	390.6	68	_	14
16	406.4	57.52	85.32	0.344	8.7	389.0	75	_	16
16	406.4	62.58	92.98	0.375	9.5	387.4	82	_	17
16	406.4	67.62	100.61	0.406	10.3	385.8	89		19
16	406.4	72.80	108.20	0.438	11.1	384.2	96	—	20
16	406.4	77.79	115.77	0.469	11.9	382.6	103	_	20

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsic	ize: de Dia., D	Plain-En w	d Weight,	Wall Th		Inside Dia., d		est Pressur psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC6
16	406.4	82.77	123.30	0.500	12.7	381.0	110		20
16	406.4	92.66	138.27	0.562	14.3	377.8	124	_	20
16	406.4	102.63	153.11	0.625	15.9	374.6	138	_	20
16	406.4	112.51	167.83	0.688	17.5	371.4	151	_	20
16	406.4	122.15	182.42	0.750	19.1	368.2	165	_	20
16	406.4	131.71	195.98	0.812	20.6	365.2	178	_	20
16	406.4	141.34	210.33	0.875	22.2	362.0	192	_	20
16	406.4	150.89	224.55	0.938	22.8	358.8	206	_	20
16	406.4	160.20	238.64	1.000	25.4	355.6	207	_	20
16	406.4	169.43	252.61	1.062	27.0	352.4	207	_	20
16	406.4	178.72	266.45	1.125	28.6	349.2	207	_	20
16	406.4	187.93	280.17	1.188	30.2	346.0	207	_	20
16	406.4	196.91	293.76	1.250	31.8	342.8	207		20
18	457.0	35.76	53.53	0.188	4.8	447.4	37	64	8
18	457.0	41.59	62.34	0.219	5.6	445.8	43	75	9
18	457.0	47.39	71.12	0.250	6.4	444.2	49	85	10
18	457.0	53.18	78.77	0.281	7.1	442.8	55	95	11
18	457.0	58.94	87.49	0.312	7.9	441.2	61	105	13
18	457.0	64.87	96.18	0.344	8.7	439.6	67	116	14
18	457.0	70.59	104.84	0.375	9.5	438.0	73	127	15
18	457.0	76.29	113.46	0.406	10.3	436.4	79	137	17
18	457.0	82.15	122.05	0.438	11.1	434.8	85	148	18
18	457.0	87.81	130.62	0.469	11.9	433.2	92	159	19
18	457.0	93.45	139.15	0.500	12.7	431.6	98	169	20
18	457.0	104.67	156.11	0.562	14.3	428.4	110	191	20
18	457.0	115.98	172.95	0.625	15.9	425.2	122	207	20
18	457.0	127.21	189.67	0.688	17.5	422.0	135	207	20
18	457.0	138.17	206.25	0.750	19.1	418.8	133	207	20
18	457.0	149.06	221.69	0.812	20.6	415.8	159	207	20
18	457.0	160.03	238.03	0.875	22.2	412.6	171	207	20
18	457.0	170.92	254.25	0.938	23.8	409.4	183	207	20
18	457.0	181.56	270.34	1.000	25.4	406.2	105	207	20
18	457.0	192.11	286.30	1.062	27.0	403.0	207	207	20
18	457.0	202.75	302.14	1.125	28.6	399.8	207	207	20
18	457.0	213.31	317.85	1.125	30.2	396.6	207	207	20
18	457.0	223.61	333.44	1.250	31.8	393.4	207	207	20
20	508.0	46.27	69.38	0.219	5.6	496.8	41	71	8
20	508.0	52.73	79.16	0.250	6.4	495.2	47	81	10
20	508.0	59.18	87.70	0.281	7.1	493.8	52	90	11
20	508.0	65.60	97.43	0.312	7.9	492.2	58	100	12
20	508.0	72.21	107.12	0.344	8.7	490.6	64	111	13
20	508.0	78.60	116.78	0.375	9.5	489.0	70	121	15
20	508.0	84.96	126.41	0.406	10.3	487.4	70	131	16
20	508.0	91.51	136.01	0.438	11.1	485.8	81	141	17

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsi	ize: de Dia., <i>D</i>	Plain-En w	d Weight,	Wall Th		Inside Dia., <i>d</i>		est Pressur psi. min. kPa × 100	
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC6
20	508.0	97.83	145.58	0.469	11.9	484.2	87	151	18
20	508.0	104.13	155.12	0.500	12.7	482.6	93	161	20
20	508.0	116.67	174.10	0.562	14.3	479.4	105	182	20
20	508.0	129.33	192.95	0.625	15.9	476.2	117	202	20
20	508.0	141.90	211.68	0.688	17.5	473.0	128	207	20
20	508.0	154.19	230.27	0.750	19.1	469.8	140	207	20
20	508.0	166.40	247.60	0.812	20.6	466.8	151	207	20
20	508.0	178.72	265.95	0.875	22.2	463.6	163	207	20
20	508.0	190.96	284.18	0.938	23.8	460.4	174	207	20
20	508.0	202.92	302.28	1.000	25.4	457.2	186	207	20
20	508.0	214.80	320.26	1.062	27.0	454.0	198	207	20
20	508.0	226.78	338.11	1.125	28.6	450.8	207	207	20
20	508.0	238.68	355.83	1.125	30.2	447.6	207	207	20
20	508.0	250.31	373.43	1.250	31.8	444.4	207	207	20
20	508.0	261.86	389.81	1.250	33.3	441.4	207	207	20
20	508.0	273.51	407.17	1.375	34.9	438.2	207	207	20
20	508.0	275.51	407.17	1.575	34.7	436.2	207	207	20
22	559.0	50.94	76.42	0.219	5.6	547.8	37	65	8
22	559.0	58.07	87.21	0.250	6.4	546.2	43	74	ç
22	559.0	65.18	96.63	0.281	7.1	544.8	47	82	10
22	559.0	72.27	107.36	0.312	7.9	543.2	53	91	11
22	559.0	79.56	118.06	0.344	8.7	541.6	58	100	12
22	559.0	86.61	128.73	0.375	9.5	540.0	63	110	13
22	559.0	93.63	139.37	0.406	10.3	538.4	69	119	14
22	559.0	100.86	149.97	0.438	11.1	536.8	74	128	16
22	559.0	107.85	160.55	0.469	11.9	535.2	79	137	17
22	559.0	114.81	171.09	0.500	12.7	533.6	85	147	18
22	559.0	128.67	192.08	0.562	14.3	530.4	95	165	20
22	559.0	142.68	212.95	0.625	15.9	527.2	106	184	20
22	559.0	156.60	233.68	0.688	17.5	524.0	117	202	20
22	559.0	170.21	254.30	0.750	19.1	520.8	127	207	20
22	559.0	183.75	273.51	0.812	20.6	517.8	137	207	20
22	559.0	197.41	293.87	0.875	22.2	514.6	148	207	20
22	559.0	211.00	314.11	0.938	23.8	511.4	159	207	20
22	559.0	224.28	334.23	1.000	25.4	508.2	169	207	20
22	559.0	237.48	354.22	1.062	27.0	505.0	180	207	20
22	559.0	250.81	374.08	1.125	28.6	501.8	190	207	20
22	559.0	264.06	393.81	1.188	30.2	498.6	201	207	20
22	559.0	277.01	413.42	1.250	31.8	495.4	207	207	20
22	559.0	289.88	431.69	1.312	33.3	492.4	207	207	20
22	559.0	302.88	451.06	1.375	34.9	489.2	207	207	20
22	559.0	315.79	470.30	1.438	36.5	486.0	207	207	20
22	559.0	328.41	489.41	1.500	38.1	482.8	207	207	20
24	610.0	63.41	95.26	0.250	6.4	597.2	39	68	8
24 24	610.0 610.0	71.18	93.26 105.56	0.230	0.4 7.1	597.2 595.8	39 43	08 75	Ģ
						. Inside diameters ar			

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsi	ize: de Dia., D	Plain-End W	-	Wall Th		Inside Dia., d	Test Pressure, psi. min. kPa × 100			
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LCe	
24	610.0	78.93	117.30	0.312	7.9	594.2	48	84	10	
24	610.0	86.91	129.00	0.344	8.7	592.6	53	92	11	
24	610.0	94.62	140.68	0.375	9.5	591.0	58	101	12	
24	610.0	102.31	152.32	0.406	10.3	589.4	63	109	13	
24	610.0	110.22	163.93	0.438	11.1	587.8	68	117	14	
24	610.0	117.86	175.51	0.469	11.9	586.2	73	126	15	
24	610.0	125.49	187.06	0.500	12.7	584.6	78	134	16	
24	610.0	140.68	210.07	0.562	14.3	581.4	87	151	18	
24	610.0	156.03	232.94	0.625	15.9	578.2	97	168	20	
24	610.0	171.29	255.69	0.688	17.5	575.0	107	185	20	
24	610.0	186.23	278.32	0.750	19.1	571.8	117	202	20	
24	610.0	201.09	299.41	0.812	20.6	568.8	126	207	20	
24	610.0	216.10	321.79	0.875	22.2	565.6	136	207	20	
24	610.0	231.03	344.05	0.938	23.8	562.4	145	207	20	
24	610.0	245.64	366.17	1.000	25.4	559.2	155	207	20	
24	610.0	260.17	388.17	1.062	27.0	556.0	165	207	20	
24	610.0	274.84	410.05	1.125	28.6	552.8	175	207	20	
24	610.0	289.44	431.80	1.188	30.2	549.6	184	207	20	
24	610.0	303.71	453.42	1.250	31.8	546.4	194	207	20	
24	610.0	317.91	473.57	1.312	33.3	543.4	203	207	20	
24	610.0	332.25	494.95	1.375	34.9	540.2	203	207	20	
24	610.0	346.50	516.20	1.438	36.5	537.0	207	207	20	
24	610.0	360.45	537.33	1.500	38.1	533.8	207	207	20	
24	610.0	374.31	558.32	1.562	39.7	530.6	207	207	20	
26	660.0	68.75	103.15	0.250	6.4	647.2	36	63	-	
26	660.0	77.18	114.31	0.281	7.1	645.8	40	69	8	
26	660.0	85.60	127.04	0.312	7.9	644.2	45	77	9	
26	660.0	94.26	139.73	0.344	8.7	642.6	49	85	10	
26	660.0	102.63	152.39	0.375	9.5	641.0	54	93	1	
26	660.0	110.98	165.02	0.406	10.3	639.4	58	101	12	
26	660.0	119.57	177.62	0.438	11.1	637.8	63	109	13	
26	660.0	127.88	190.19	0.469	11.9	636.2	67	116	14	
26	660.0	136.17	202.72	0.500	12.7	634.6	72	124	15	
26	660.0	152.68	227.70	0.562	14.3	631.4	81	140	17	
26	660.0	169.38	252.55	0.625	15.9	628.2	90	155	19	
26	660.0	185.99	277.27	0.688	17.5	625.0	99	171	20	
26	660.0	202.25	301.87	0.750	19.1	621.8	108	187	20	
26	660.0	218.43	324.81	0.812	20.6	618.8	116	201	20	
26	660.0	234.79	349.16	0.875	22.2	615.6	125	207	20	
26	660.0	251.07	373.39	0.938	23.8	612.4	134	207	20	
26	660.0	267.00	397.49	1.000	25.4	609.2	143	207	20	
28	711.0	74.09	111.20	0.250	6.4	698.2	34	58		
28	711.0	83.19	123.24	0.281	7.1	696.8	37	64	8	
28	711.0	92.26	136.97	0.312	7.9	695.2	41	72	ç	

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsi	ize: de Dia., D		d Weight,	Wall Th		Inside Dia., <i>d</i>	Test Pressure, psi. min. kPa × 100				
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65		
28	711.0	101.61	150.67	0.344	8.7	693.6	46	79	99		
28	711.0	110.64	164.34	0.375	9.5	692.0	50	86	108		
28	711.0	119.65	177.98	0.406	10.3	690.4	54	93	117		
28	711.0	128.93	191.58	0.438	11.1	688.8	58	101	126		
28	711.0	137.90	205.15	0.469	11.9	687.2	62	108	135		
28	711.0	146.85	218.69	0.500	12.7	685.6	67	115	144		
28	711.0	164.69	245.68	0.562	14.3	682.4	75	130	162		
28	711.0	182.73	272.54	0.625	15.9	679.2	83	144	180		
28	711.0	200.68	299.28	0.688	17.5	676.0	92	159	199		
28	711.0	218.27	325.89	0.750	19.1	672.8	100	173	207		
28	711.0	235.78	350.72	0.812	20.6	669.8	108	187	207		
28	711.0	253.48	377.08	0.875	22.2	666.6	116	202	207		
28	711.0	271.10	403.32	0.938	23.8	663.4	125	207	207		
28	711.0	288.36	429.44	1.000	25.4	660.2	133	207	207		
30	762.0	79.43	119.25	0.250	6.4	749.2	31	54	68		
30	762.0	89.19	132.17	0.281	7.1	747.8	35	60	75		
30	762.0	98.93	146.91	0.312	7.9	746.2	39	67	84		
30	762.0	108.95	161.61	0.344	8.7	744.6	43	74	92		
30	762.0	118.65	176.29	0.375	9.5	743.0	46	80	101		
30	762.0	128.32	190.93	0.406	10.3	741.4	50	87	109		
30	762.0	138.29	205.54	0.438	11.1	739.8	54	94	118		
30	762.0	147.92	220.12	0.469	11.9	738.2	58	101	126		
30	762.0	157.53	234.67	0.500	12.7	736.6	62	108	134		
30	762.0	176.69	263.67	0.562	14.3	733.4	70	121	151		
30	762.0	196.08	292.54	0.625	15.9	730.2	78	135	168		
30	762.0	215.38	321.29	0.688	17.5	727.0	86	148	185		
30	762.0	234.29	349.91	0.750	19.1	723.8	93	162	202		
30	762.0	253.12	376.63	0.812	20.6	720.8	101	174	207		
30	762.0	272.17	405.00	0.875	22.2	717.6	108	188	207		
30	762.0	291.14	433.26	0.938	23.8	714.4	116	202	207		
36	762.0	309.72	461.38	1.000	25.4	711.2	124	207	207		
30	762.0	328.22	489.38	1.062	27.0	708.0	132	207	207		
30	762.0	346.93	517.25	1.125	28.6	704.8	140	207	207		
30	762.0	365.56	544.99	1.188	30.2	701.6	148	207	207		
30	762.0	383.81	572.61	1.250	31.8	698.4	155	207	207		
32	813.0	84.77	127.30	0.250	6.4	800.2	29	51	64		
32	813.0	95.19	141.10	0.281	7.1	798.8	33	56	70		
32	813.0	105.59	156.84	0.312	7.9	797.2	36	63	78		
32	813.0	116.30	172.56	0.344	8.7	795.6	40	69	86		
32	813.0	126.66	188.24	0.375	9.5	794.0	44	75	94		
32	813.0	136.99	203.88	0.406	10.3	792.4	47	82	102		
32	813.0	147.64	219.50	0.438	11.1	790.8	51	88	11(
32	813.0	157.94	235.09	0.469	11.9	789.2	54	94	118		
32	813.0	168.21	250.64	0.500	12.7	787.6	58	101	126		

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Size: Outside Dia., D		Plain-End Weight, <i>w</i> _{pe}		Wall Th		Inside Dia., d	Test Pressure, psi. min. kPa × 100			
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65	
32	813.0	188.70	281.65	0.562	14.3	784.4	65	114	142	
32	813.0	209.43	312.54	0.625	15.9	781.2	73	126	158	
32	813.0	230.08	343.30	0.688	17.5	778.0	80	139	174	
32	813.0	250.31	373.93	0.750	19.1	774.8	87	152	190	
32	813.0	270.47	402.54	0.812	20.6	771.8	94	164	204	
32	813.0	290.86	432.93	0.875	22.2	768.6	102	176	207	
32	813.0	311.17	463.19	0.938	23.8	765.4	109	189	207	
32	813.0	331.08	493.32	1.000	25.4	762.2	116	202	207	
32	813.0	350.90	523.33	1.062	27.0	759.0	124	207	207	
32	813.0	370.96	553.22	1.125	28.6	755.8	131	207	207	
32	813.0	390.94	582.98	1.188	30.2	752.6	131	207	207	
32	813.0	410.51	612.61	1.250	31.8	749.4	136	207	207	
52	015.0	410.51	012.01	1.250	51.0	742.4	140	207	207	
34	864.0	90.11	135.35	0.250	6.4	851.2	28	48	60	
34	864.0	101.19	150.03	0.281	7.1	849.8	31	53	66	
34	864.0	112.25	166.78	0.312	7.9	848.2	34	59	74	
34	864.0	123.65	183.50	0.344	8.7	846.6	37	65	81	
34	864.0	134.67	200.18	0.375	9.5	845.0	41	71	89	
34	864.0	145.67	216.84	0.406	10.3	843.4	44	77	96	
34	864.0	157.00	233.46	0.438	11.1	841.8	48	83	104	
34	864.0	167.95	250.05	0.469	11.9	840.2	51	89	111	
34	864.0	178.89	266.61	0.500	12.7	838.6	55	95	119	
34	864.0	200.70	299.64	0.562	14.3	835.4	62	107	134	
34	864.0	222.78	332.53	0.625	15.9	832.2	69	119	148	
34	864.0	244.77	365.31	0.688	17.5	829.0	75	131	163	
34	864.0	266.33	397.95	0.750	19.1	825.8	82	143	178	
34	864.0	287.81	428.44	0.812	20.6	822.8	89	154	192	
34	864.0	309.55	460.85	0.875	22.2	819.6	96	166	207	
34	864.0	331.21	493.12	0.938	23.8	816.4	103	178	207	
34	864.0	352.44	525.27	1.000	25.4	813.2	109	190	207	
34	864.0	373.59	557.29	1.062	27.0	810.0	116	202	207	
34	864.0	394.99	589.19	1.125	28.6	806.8	123	202	207	
34	864.0	416.31	620.96	1.125	30.2	803.6	125	207	207	
34	864.0	437.21	652.60	1.250	31.8	800.4	130	207	207	
54	004.0	437.21	052.00	1.230	51.6	800.4	157	207	201	
36	914.0	95.45	143.24	0.250	6.4	901.2	26	45	56	
36	914.0	107.20	158.79	0.281	7.1	899.8	29	50	63	
36	914.0	118.92	176.52	0.312	7.9	898.2	32	56	70	
36	914.0	131.00	194.22	0.344	8.7	896.6	35	61	77	
36	914.0	142.68	211.90	0.375	9.5	895.0	39	67	84	
36	914.0	154.34	229.54	0.406	10.3	893.4	42	73	9	
36	914.0	166.35	247.15	0.438	11.1	891.8	45	78	98	
36	914.0	177.97	264.72	0.469	11.9	890.2	48	84	10	
36	914.0	189.57	282.27	0.500	12.7	888.6	52	90	112	
36	914.0	212.70	317.27	0.562	14.3	885.4	58	101	120	
36	914.0	236.13	352.14	0.625	15.9	882.2	65	112	140	

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsi	ize: de Dia., <i>D</i>	Plain-En w	d Weight,	Wall Th		Inside Dia., d	Test Pressure, psi. min. kPa × 100				
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC65		
36	914.0	259.47	386.88	0.688	17.5	879.0	71	124	154		
36	914.0	282.35	421.50	0.750	19.1	875.8	78	135	169		
36	914.0	305.16	453.84	0.812	20.6	872.8	84	145	182		
36	914.0	328.24	488.22	0.875	22.2	869.6	90	157	196		
36	914.0	351.25	522.47	0.938	23.8	866.4	97	168	207		
36	914.0	373.80	556.59	1.000	25.4	863.2	103	179	207		
36	914.0	396.27	590.58	1.062	27.0	860.0	110	191	207		
36	914.0	419.02	624.45	1.125	28.6	856.8	117	202	207		
36	914.0	441.69	658.19	1.188	30.2	853.6	123	207	207		
36	914.0	463.91	691.81	1.250	31.8	850.4	130	207	207		
38	965.0	125.58	186.46	0.312	7.9	949.2	30	53	66		
38	965.0	138.35	205.17	0.344	8.7	947.6	34	58	73		
38	965.0	150.69	223.84	0.375	9.5	946.0	37	64	79		
38	965.0	163.01	242.49	0.406	10.3	944.4	40	69	86		
38	965.0	175.71	261.11	0.438	11.1	942.8	43	74	93		
38	965.0	187.99	279.69	0.469	11.9	941.2	46	80	99		
38	965.0	200.25	298.24	0.500	12.7	939.6	49	85	106		
38	965.0	224.71	335.25	0.562	14.3	936.4	55	96	120		
38	965.0	249.48	372.14	0.625	15.9	933.2	61	106	133		
38	965.0	274.16	408.89	0.688	17.5	930.0	68	117	146		
38	965.0	298.37	445.52	0.750	19.1	926.8	74	128	160		
38	965.0	322.50	479.75	0.812	20.6	923.8	79	138	172		
38	965.0	346.93	516.14	0.875	22.2	920.6	86	148	186		
38	965.0	371.28	552.40	0.938	23.8	917.4	92	159	199		
38	965.0	395.16	588.53	1.000	25.4	914.2	98	170	207		
38	965.0	418.96	624.54	1.062	27.0	911.0	104	181	207		
38	965.0	443.05	660.42	1.125	28.6	907.8	110	191	207		
38	965.0	467.06	696.18	1.188	30.2	904.6	117	202	207		
38	965.0	490.61	731.80	1.250	31.8	901.4	123	207	207		
40	1016.0	132.25	196.39	0.312	7.9	1000.2	29	50	63		
40	1016.0	145.69	216.11	0.344	8.7	998.6	32	55	69		
40	1016.0	158.70	235.79	0.375	9.5	997.0	35	60	75		
40	1016.0	171.68	255.45	0.406	10.3	995.4	38	65	82		
40	1016.0	185.06	275.07	0.438	11.1	993.8	41	71	88		
40	1016.0	198.01	294.66	0.469	11.9	992.2	44	76	94		
40	1016.0	210.93	314.22	0.500	12.7	990.6	47	81	101		
40	1016.0	236.71	353.24	0.562	14.3	987.4	52	91	114		
40	1016.0	262.83	392.13	0.625	15.9	984.2	58	101	126		
40	1016.0	288.86	430.90	0.688	17.5	981.0	64	111	139		
40	1016.0	314.39	469.55	0.750	19.1	977.8	70	121	152		
40	1016.0	339.84	505.66	0.812	20.6	974.8	75	131	164		
40	1016.0	365.62	544.06	0.875	22.2	971.6	81	141	176		
40	1016.0	391.32	582.33	0.938	23.8	968.4	87	151	189		
40	1016.0	416.52	620.48	1.000	25.4	965.2	93	161	202		

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

Outsi	Size: ide Dia., D	Plain-End Weight, wpe		Wall Th		Inside Dia., d	Test Pressure, psi. min. kPa × 100			
in.	mm	lb/ft	kg/m	in.	mm	mm	LC30	LC52	LC6	
40	1016.0	441.61	658.50	1.062	27.0	962.0	99	172	207	
40	1016.0	467.08	696.39	1.125	28.6	958.8	105	182	201	
40	1016.0	492.44	734.16	1.188	30.2	955.6	111	192	207	
40	1016.0	517.31	771.80	1.250	31.8	952.4	117	202	207	
42	1067.0	153.04	227.05	0.344	8.7	1049.6	30	53	6	
42	1067.0	166.71	247.74	0.375	9.5	1048.0	33	57	7	
42	1067.0	180.35	268.40	0.406	10.3	1046.4	36	62	7	
42	1067.0	194.42	289.03	0.438	11.1	1044.8	39	67	8	
42	1067.0	208.03	309.62	0.469	11.9	1043.2	42	72	9	
42	1067.0	221.61	330.19	0.500	12.7	1041.6	44	77	9	
42	1067.0	248.72	371.22	0.562	14.3	1038.4	50	86	10	
42	1067.0	276.18	412.13	0.625	15.9	1035.2	55	96	12	
42	1067.0	303.55	452.91	0.688	17.5	1032.0	61	106	13	
42	1067.0	330.41	493.57	0.750	19.1	1028.8	67	116	14	
42	1067.0	357.19	531.57	0.812	20.6	1025.8	72	125	15	
42	1067.0	384.31	571.98	0.875	22.2	1022.6	77	134	16	
42	1067.0	411.35	612.26	0.938	23.8	1019.4	83	144	18	
42	1067.0	437.88	652.42	1.000	25.4	1016.2	89	154	19	
42	1067.0	464.33	692.45	1.062	27.0	1013.0	94	163	20	
42	1067.0	491.11	732.36	1.125	28.6	1009.8	100	173	20	
42	1067.0	517.82	772.14	1.188	30.2	1006.6	105	183	20	
42	1067.0	544.01	811.79	1.250	31.8	1003.4	111	192	20	

Table C-1—Metric Dimensions^a, Weights^b, and Test Pressures (Continued)

APPENDIX D—SUPPLEMENTARY REQUIREMENT(S)

By agreement between the purchaser and manufacturer, and when specified on the purchase order, the following supplementary requirement(s) shall apply.

Supplementary Requirement 15 (SR15)—Test Certificates for CRA Line Pipe

SR15.1

The manufacturer shall provide the following data, as applicable, for each item for which the Supplementary Requirement is specified on the purchaser order. Manufacturer's certificate shall state the API specification and revision date thereof, to which pipe was manufactured.

a. Specified diameter, wall thickness, grade, process of manufacture, and type of heat treatment.

b. Chemical analyses (heat, product, control, a recheck) showing the weight percent of all elements whose limits or reporting requirements a set in this specification.

c. Test data for all tensile tests required by this specification, including yield strength, ultimate tens strength, elongation. The type, size, and orientation of specimens shall be shown.

d. Fracture toughness test results (including test type and criteria, and the size, location, and orientation of specimen) where such testing is specified by the purchaser.

e. Minimum hydrostatic test pressure and duration.

f. For welded pipe for which nondestructive inspection of the weld seam is required by this specification, the method of nondestructive inspection employed (radiological, ultrasonic, electromagnetic, and/or magnetic particle), and the type and size of all penetrameters and/or reference standards used.

g. For seamless pipe for which nondestructive inspection is specified by the purchaser, the method of inspection employed (ultrasonic, electromagnetic, or magnetic particle), and the type and size of the reference standard used.

h. For electric-welded pipe, the minimum temperature for heat treatment of the weld seam. Where such heat treatment is not performed, "No Seam Heat Treatment" shall be stated on the certificate.

i. Results of any supplemental testing required by the purchaser.

SR15.2

The manufacturer shall establish and follow procedures for maintaining heat and lot identity of all pipe covered by this Supplementary Requirement. The procedures shall provide means for tracing any length of pipe or coupling to the proper heat and lot, and to all applicable chemical and mechanical test results.

APPENDIX E—GUIDED-BEND TEST JIG DIMENSIONS

1	2		3		4		5	1	2		3		4		5
Outside	Wall			Dimer	nsion A			Outside	Wall			Dimer	nsion A		
Dia.,	Thick.		-1812		5-2205			Dia.,	Thick.)-1812		5-2205		
in.	in.	LC30	-2242	LC65	5-2506	LC52	2-1200	in.	in.	LC30)-2242	LC65	5-2506	LC52	2-1200
D	t	in.	mm.	in.	mm.	in.	mm.	D	t	in.	mm.	in.	mm.	in.	mm.
12 ³ / ₄	.172	1.6	40.6	1.9	48.3	2.2	55.9	16	.219	2.2	55.9	2.6	66.0	3.1	78.7
$12^{3}/_{4}$.188	1.9	48.3	2.2	55.9	2.6	66.0	16	.250	2.2	55.9	2.6	66.0	3.1	78.7
$12^{3}/_{4}$.203	1.9	48.3	2.2	55.9	2.6	66.0	16	.281	2.6	66.0	3.1	78.7	3.7	94.0
$12^{3}/_{4}$.219	2.2	55.9	2.6	66.0	3.1	78.7	16	.312	3.1	78.7	3.7	94.0	4.4	111.8
$12^{3}/_{4}$.250	2.6	66.0	3.1	78.7	3.7	94.0	16	.344	3.7	94.0	4.4	111.8	5.2	132.1
$12^{3}/_{4}$.281	3.1	78.7	3.7	94.0	4.4	111.8	16	.375	3.7	94.0	4.4	111.8	6.2	157.5
$12^{3}/_{4}$.312	3.1	78.7	3.7	94.0	5.2	132.1	16	.406	4.4	111.8	5.2	132.1	6.2	157.5
$12^{3}/_{4}$.330	3.7	94.0	4.4	111.8	5.2	132.1	16	.438	5.2	132.1	6.2	157.5	7.4	188.0
$12^{3}/_{4}$.344	3.7	94.0	4.4	111.8	5.2	132.1	16	.469	5.2	132.1	6.2	157.5	7.4	188.0
$12^{3}/_{4}$.375	4.4	111.8	5.2	132.1	6.2	157.5	16	.500	6.2	157.5	7.4	188.0	8.8	223.5
$12^{3/4}$.406	4.4	111.8	6.2	157.5	7.4	188.0	16	.562	7.4	188.0	8.8	223.5	10.5	266.7
$12^{3}/_{4}$.438	5.2	132.1	6.2	157.5	8.8	223.5	16	.625	8.8	223.5	10.5	266.7	12.6	320.0
$12^{3}/_{4}$.500	6.2	157.5	8.8	223.5	10.5	266.7	16	.688	10.5	266.7	12.6	320.0	15.1	383.5
$12^{3/4}$.562	7.4	188.0	10.5	266.7	12.0	320.0	16	.750	10.5	266.7	15.1	383.5	21.7	551.2
$12^{3/4}$.625	10.5	266.7	12.6	320.0	18.1	459.7	16	.812	12.6	320.0	18.1	459.7	26.0	660.4
$12^{3}/_{4}$.688	12.6	320.0	18.1	459.7	26.0	660.4	16	.875	15.1	383.5	21.7	551.2	31.2	792.5
$12^{3/4}$.750	15.1	383.5	21.7	551.2	31.2	792.5	16	.938	18.1	459.7	26.0	660.4	31.2	792.5
$12^{3/4}$.812	18.1	459.7	26.0	660.4	31.2	792.5	16	1.000	21.7	551.2	31.2	792.5	31.2	792.5
$12^{3}/_{4}$.875	21.7	551.2	31.2	792.5	31.2	792.5	16	1.062	26.0	564.2	31.2	792.5	31.2	792.5
14	100	1.0	40 C	2.2	55.0	26	(()	16	1.125	31.2	792.5	31.2	792.5	31.2	792.5
14	.188	1.6	40.6	2.2	55.9	2.6	66.0	10	100	1.0	40 C	1.0	10.2		
14	.203		40.2			2.6	66.0	18	.188	1.6	40.6	1.9	48.3		
14 14	.210 .219	1.9 2.2	48.3 55.9	2.2 2.6	55.9 66.0	2.6 3.1	66.0 78.7	18 18	.219 .250	1.9 2.2	48.3 55.9	2.2 2.6	55.9 66.0	2.6 3.1	66.0 78.7
14	.219	2.2	66.0	3.1	78.7	3.1 3.7	94.0	18	.230	2.2	66.0	2.0 3.1	78.7	3.1 3.7	94.0
14	.230	2.6	66.0	3.1	78.7	4.4	111.8	18	.312	3.1	78.7	3.7	94.0	4.4	111.8
14 14	.312	3.1	78.7	3.7	94.0	4.4	111.8	18	.312	3.7	94.0	4.4	111.8	5.2	132.1
14	.344	3.7	94.0	4.4	111.8	5.2	132.1	18	.375	3.7	94.0	4.4	111.8	5.2	132.1
14	.375	4.4	111.8	5.2	132.1	6.2	157.5	18	.406	4.4	111.8	5.2	132.1	6.2	157.5
14	.406	4.4	111.8	5.2	132.1	7.4	188.0	18	.438	4.4	111.8	5.2	132.1	0.2 7.4	188.0
14	.438	5.2	132.1	6.2	157.5	7.4	188.0	18	.469	5.2	132.1	6.2	157.5	7.4	188.0
14	.469	5.2	132.1	7.4	188.0	8.8	223.5	18	.500	5.2	132.1	6.2	157.5	8.8	223.5
14	.500	6.2	157.5	7.4	188.0	10.5	266.7	18	.562	6.2	157.5	7.4	188.0	10.5	266.7
14	.562	7.4	188.0	8.8	223.5	12.6	320.0	18	.625	7.4	188.0	8.8	223.5	12.6	320.0
14	.625	8.8	223.5	12.6	320.0	15.1	383.5	18	.688	8.8	223.5	10.5	266.7	15.1	383.5
14	.688	10.5	266.7	15.1	383.5	18.1	459.7	18	.750	10.5	266.7	12.6	320.0	18.1	459.7
14	.750	12.6	320.0	18.1	459.7	26.0	660.4	18	.812	12.6	320.0	15.1	383.5	21.7	551.2
14	.812							18	.875	12.6	320.0	18.1	459.7	26.1	662.9
14	.812	15.1	383.5	21.7	551.2	31.2	792.5	18	.938	15.1	383.5	21.7	551.2	31.2	792.5
14	.875	18.1	459.7	31.2	792.5	31.2	792.5	18	1.000	18.1	459.7	26.0	660.4	31.2	792.5
14	.938	21.7	551.2	31.2	792.5	31.2	792.5	18	1.062	21.7	551.2	31.2	792.5	31.2	792.5
	-							18	1.125	26.0	660.4	31.2	792.5	31.2	792.5
16	.188	1.6	40.6	2.2	55.9	2.6	66.0	18	1.188	31.2	792.5	31.2	792.5	31.2	792.5
16	.203	1.9	48.3	2.2	55.9	2.6	66.0	18	1.250	31.2	792.5	31.2	792.5	31.2	792.5

Table E-1—Guided-Bend Test Jig Dimensions

Table E-1—Guided-Bend Test Jig Dimensions (Continued)

1	2		3		4		5	1	2		3		4		5
Outside	Wall				nsion A			Outside	Wall			Dime	nsion A		
Dia.,	Thick.	LC30)-1812		5-2205			Dia.,	Thick.		0-1812		5-2205		
in.	in.	LC30)-2242	LC65	5-2506	LC52	2-1200	in.	in.	LC3	0-2242	LC6	5-2506	LC52	2-1200
D	t	in.	mm.	in.	mm.	in.	mm.	D	t	in.	mm.	in.	mm.	in.	mm.
20	.219	1.9	48.3	2.2	55.9	2.6	66.0	22	1.312	26.0	660.4	31.2	792.5	31.2	792.5
20	.250	2.2	55.9	2.6	66.0	3.1	78.7	22	1.375	31.2	792.5	31.2	792.5	31.2	792.5
20	.281	2.6	66.0	3.1	78.7	3.7	94.0	22	1.438	31.2	792.5	31.2	792.5	31.2	792.5
20	.312	3.1	78.7	3.7	94.0	4.4	111.8	22	1.500	31.2	792.5	31.2	792.5	31.2	792.5
20	.344	3.1	78.7	3.7	94.0	4.4	111.8								
20	.375	3.7	94.0	4.4	111.8	5.2	132.1	24	.250	2.2	55.9	2.6	66.0	3.1	78.7
20	.406	4.4	111.8	5.2	132.1	6.2	157.5	24	.281	2.6	66.0	3.1	78.7	3.7	94.0
20	.438	4.4	111.8	5.2	132.1	6.2	157.5	24	.312	3.1	66.0	3.7	94.0	4.4	111.8
20	.469	5.2	132.1	6.2	157.5	7.4	188.0	24	.344	3.1	78.7	3.7	94.0	4.4	111.8
20	.500	5.2	132.1	6.2	157.5	7.4	188.0	24	.375	3.7	94.0	4.4	111.8	5.2	132.1
20	.562	7.4	157.5	7.4	188.0	8.8	223.5	24	.406	3.7	94.0	4.4	111.8	5.2	132.1
20	.625	7.4	188.0	8.8	223.5	10.5	266.7	24	.438	4.4	111.8	5.2	132.1	6.2	157.5
20	.688	8.8	223.5	10.5	266.7	12.6	320.0	24	.469	4.4	111.8	5.2	132.1	6.2	157.5
20	.750	8.8	223.5	12.6	320.0	15.1	383.5	24	.500	5.2	132.1	6.2	157.5	7.4	188.0
20	.812	10.5	266.7	15.1	383.5	18.1	459.7	24	.562	6.2	157.5	7.4	188.0	8.8	223.5
20	.875	12.6	320.0	15.1	383.5	21.7	551.2	24	.625	6.2	157.5	8.8	223.5	10.5	266.7
20	.935	15.1	383.5	18.1	459.7	26.0	660.4	24	.688	7.4	188.0	8.8	223.5	12.6	320.0
20	1.000	15.1	383.5	21.7	551.2	31.2	792.5	24	.750	8.8	223.5	10.5	266.7	12.6	320.0
20	1.062	18.1	459.7	26.0	660.4	31.2	792.5	24	.812	10.5	266.7	12.6	320.0	15.1	383.5
20	1.125	21.7	551.2	31.2	792.5	31.2	792.5	24	.875	10.5	266.7	12.6	320.0	18.1	459.7
20	1.188	26.0	660.4	31.2	792.5	31.2	792.5	24	.938	12.6	320.0	15.1	383.5	21.7	551.7
20	1.250	26.0	660.4	31.2	792.5	31.2	792.5	24	1.000	12.6	320.0	18.1	459.7	21.7	551.2
20	1.312	31.2	792.5	31.2	792.5	31.2	792.5	24	1.062	15.1	383.5	18.1	459.7	26.0	660.4
20	1.375	31.2	792.5	31.2	792.5	31.2	792.5	24	1.125	18.1	459.7	21.7	551.2	31.2	792.5
22	010	1.0	40.2	2.2	55.0	2.6		24	1.188	18.1	459.7	26.0	660.4	31.2	792.5
22	.219	1.9	48.3	2.2	55.9	2.6	66.0	24	1.250	21.7	551.2	26.0	660.4	31.2	792.5
22	.250	2.2	55.9	2.6	66.0	3.1	78.7	24	1.312	21.7	551.2	31.2	792.5	31.2	792.5
22	.281	2.6	66.0	3.1	78.7	3.7	94.0	24	1.375	26.0	660.4	31.2	792.5	31.2	792.5
22	.312	3.1	78.7	3.7	94.0	4.4	111.8	24	1.438	31.2	792.5 792.5	31.2	792.5	31.2	792.5
22	.344	3.1	78.7	3.7	94.0	4.4	111.8	24	1.500	31.2		31.2	792.5	31.2	792.5
22 22	.375	3.7	94.0 04.0	4.4	111.8	5.2	132.1	24	1.562	31.2	792.5	31.2	792.5	31.2	792.5
	.406	3.7	94.0	4.4 5.2	111.8	6.2	157.5 157.5	26	250	<u></u>	55.0	26	66.0	21	78.7
22 22	.438 .469	4.4 4.4	111.8 111.8	5.2 6.2	132.1 157.5	6.2 7.4	157.5 188.0	26	.250 .281	2.2 2.6	55.9 66.0	2.6 3.1	66.0 78.7	3.1 3.7	78.7 94.0
22	.469	4.4 5.2	132.1	6.2 6.2	157.5	7.4 7.4	188.0 188.0	26	.281	2.6 2.6	66.0	3.1 3.1	78.7 78.7	3.7 3.7	94.0 94.0
22	.500 .562	5.2 6.2	152.1	6.2 7.4	157.5	7.4 8.8	188.0 223.5	26 26	.312	2.0 3.1	66.0 78.7	3.1 3.7	78.7 94.0	5.7 4.4	94.0 111.8
22	.562	0.2 7.4	137.5	7.4 8.8	223.5	0.0 10.5	225.5 266.7	20	.344 .375	3.1 3.7	78.7 94.0	5.7 4.4	94.0 111.8	4.4 5.2	132.1
22	.625		188.0		225.5 266.7	10.5 12.6	320.0		.373	3.7 3.7	94.0 94.0	4.4 4.4	111.8	5.2 5.2	132.1
22	.088 .750	7.4 8.8	223.5	10.5 10.5	266.7 266.7	12.0 15.1	320.0 383.5	26 26	.400	5.7 4.4	94.0 111.8	4.4 5.2	132.1	5.2 6.2	152.1
22	.812	0.0 10.5	223.3 266.7	10.5	320.0	15.1	383.5 383.5	20	.348 .469	4.4 4.4	111.8	5.2	132.1	6.2	157.5
22	.812	10.5	320.0	12.0	383.5	13.1	383.3 459.7	20	.409	4.4 5.2	132.1	6.2	152.1	0.2 7.4	137.5
22	.938	12.0	320.0	18.1	385.5 459.7	21.7	439.7 551.2	20	.562	6.2	152.1	0.2 7.4	137.5	8.8	223.5
22	.938 1.000	12.0	383.5	18.1	459.7 459.7	26.0	660.4	20	.625	6.2	157.5	7.4 7.4	188.0	0.0 10.5	223.3 266.7
22	1.000	15.1	383.5 383.5	21.7	439.7 551.2	20.0 31.2	000.4 792.5	20	.625	0.2 7.4	137.5	8.8	223.5	10.5	266.7
22	1.062	13.1	385.5 459.7	26.0	660.4	31.2 31.2	792.3 792.5	20	.088 .750	7.4 8.8	223.5	8.8 10.5	225.5 266.7	10.5	320.0
22	1.125	21.7	439.7 551.2	20.0 31.2	792.5	31.2 31.2	792.5 792.5	20	.750	0.0 8.8	223.5 223.5	10.5	320.0	12.0	320.0 383.5
22	1.188	21.7	551.2 551.2	31.2 31.2	792.5 792.5	31.2 31.2	792.5 792.5	20	.812	0.0 10.5	225.5 266.7	12.6	320.0	15.1	383.5
	1.230	21.1	551.2	51.2	192.3	51.2	192.3	20	.075	10.5	200.7	12.0	520.0	13.1	565.5

1	2		3		4		5	1	2		3		4		5
					nsion A								nsion A		
Outside Dia., in.	Wall Thick. in.)-1812)-2242	LC65	5-2205 5-2506	LC52	2-1200	Outside Dia., in.	Wall Thick. in.)-1812)-2242	LC65	5-2205 5-2506	LC52	2-1200
D	t	in.	mm.	in.	mm.	in.	mm.	D	t	in.	mm.	in.	mm.	in.	mm.
26	.938	12.6	320.0	15.1	383.5	18.1	459.7	32	.500	4.4	111.8	5.2	132.1	6.2	157.5
26	1.000	12.6	320.0	15.1	383.5	21.7	551.2	32	.562	5.2	132.1	6.2	157.5	7.4	188.0
								32	.625	6.2	157.5	7.4	188.0	8.8	223.5
28	.250	2.2	55.9	2.6	66.0	3.1	78.7	32	.688	7.4	188.0	8.8	223.5	10.5	266.7
28	.281	2.6	66.0	3.1	78.7	3.7	94.0	32	.750	7.4	188.0	8.8	223.5	10.5	266.7
28	.312	2.6	66.0	3.1	78.7	3.7	94.0	32	.812	8.8	223.5	10.5	266.7	12.6	320.0
28	.344	3.1	78.7	3.7	94.0	4.4	111.8	32	.875	8.8	223.5	12.6	320.0	15.1	383.5
28	.375	3.7	94.0	4.4	111.8	5.2	132.1	32	.938	10.5	266.7	12.6	320.0	15.1	383.5
28	.406	3.7	94.0	4.4	111.8	5.2	132.1	32	1.000	12.6	320.0	15.1	383.5	18.1	459.7
28	.438	4.4	111.8	5.2	132.1	6.2	157.5	32	1.062	12.6	320.0	15.1	383.5	18.1	459.7
28	.469	4.4	111.8	5.2	132.1	6.2	157.5	32	1.125	15.1	383.5	18.1	459.7	21.7	551.2
28	.500	5.2	132.1	6.2	157.5	7.4	188.0	32	1.188	15.1	383.5	18.1	459.7	26.0	660.4
28	.562	5.2	132.1	6.2	157.5	8.8	223.5	32	1.250	15.1	383.5	21.7	551.2	26.0	660.4
28	.625	6.2	157.5	7.4	188.0	8.8	223.5								
28	.688	7.4	188.0	8.8	223.5	10.5	266.7	34	.250	2.2	55.9	2.6	66.0	3.1	78.7
28	.750	8.8	223.5	10.5	266.7	12.6	320.0	34	.281	2.6	66.0	3.1	78.7	3.7	94.0
28	.812	8.8	223.5	10.5	266.7	12.6	320.0	34	.312	2.6	66.0	3.1	78.7	3.7	94.0
28	.875	10.5	266.7	12.6	320.0	15.1	383.5	34	.344	3.1	78.7	3.7	94.0	4.4	111.8
28	.938	10.5	266.7	15.1	383.5	18.1	459.7	34	.375	3.1	78.7	3.7	94.0	4.4	111.8
28	1.000	12.6	320.0	15.1	383.5	18.1	459.7	34	.406	3.7	94.0	4.4	111.8	5.2	132.1
20	250		55.0	2.6	66.0	2.1	70 7	34	.438	3.7	94.0	5.2	132.1	5.2	132.1
30	.250	2.2	55.9	2.6	66.0	3.1	78.7	34	.469	4.4	111.8	5.2	132.1	6.2	157.5
30	.281	2.6	66.0	3.1	78.7	3.7	94.0 04.0	34	.500	4.4	111.8	5.2	132.1	6.2	157.5
30	.312	2.6	66.0	3.1	78.7	3.7	94.0	34	.562	5.2	132.1	6.2	157.5	7.4	188.0
30 20	.344	3.1	78.7	3.7	94.0	4.4	111.8	34	.625	6.2	157.5	7.4	188.0	8.8	223.5
30 20	.375	3.7	94.0 04.0	4.4	111.8	5.2	132.1	34	.688	7.4	188.0	8.8	223.5	10.5	266.7
30 30	.406	3.7	94.0	4.4 5.2	111.8 132.1	5.2	132.1	34	.750 .812	7.4	188.0	8.8 10.5	223.5	10.5	266.7 381.0
30 30	.438 .469	4.4 4.4	111.8 111.8	5.2 5.2	132.1	6.2 6.2	157.5 157.5	34 34	.812	8.8 8.8	223.5 223.5	10.5	266.7 266.7	15.0 15.1	383.5
30	.500	4.4 5.2	132.1	6.2	152.1	0.2 7.4	137.5	34	.938	0.0 10.5	223.3 266.7	10.5	320.0	15.1	383.5
30	.562	5.2	132.1	6.2	157.5	7.4	188.0	34	1.000	10.5	266.7	12.0	383.5	18.1	459.7
30	.625	6.2	152.1	0.2 7.4	188.0	8.8	223.5	34	1.062	12.6	320.0	15.1	383.5	18.1	459.7
30	.688	0.2 7.4	188.0	8.8	223.5	10.5	266.7	34	1.125	12.6	320.0	18.1	459.7	21.7	551.2
30	.750	7.4	188.0	10.5	266.7	12.6	320.0	34	1.125	15.1	383.5	18.1	459.7	21.7	551.2
30	.812	8.8	223.5	10.5	266.7	12.6	320.0	34	1.250	15.1	383.5	18.1	459.7	26.0	660.4
30	.875	10.5	266.7	12.6	320.0	15.1	383.5	54	1.250	15.1	505.5	10.1	-39.1	20.0	000.4
30	.938	10.5	266.7	12.6	320.0	18.1	459.7	36	.250	2.2	55.9	2.6	66.0	3.1	78.7
30	1.000	12.6	320.0	15.1	383.5	18.1	459.7	36	.281	2.6	66.0	3.1	78.7	3.7	94.0
50	1.000	12.0	520.0	13.1	505.5	10.1	-157.1	36	.312	2.6	66.0	3.1	78.7	3.7	94.0
32	.250	2.2	55.9	2.6	66.0	3.1	78.7	36	.344	3.1	78.7	3.7	94.0	4.4	111.8
32	.281	2.6	66.0	3.1	78.7	3.7	94.0	36	.375	3.1	78.7	3.7	94.0	4.4	111.8
32	.312	2.6	66.0	3.1	78.7	3.7	94.0	36	.406	3.7	94.0	4.4	111.8	5.2	132.1
32	.344	3.1	78.7	3.7	94.0	4.4	111.8	36	.438	3.7	94.0	4.4	111.8	5.2	132.1
32	.375	3.7	94.0	3.7	94.0	5.2	132.1	36	.469	4.4	111.8	5.2	132.1	6.2	157.5
32	.406	3.7	94.0	4.4	111.8	5.7	144.8	36	.500	4.4	111.8	5.2	132.1	6.2	157.5
32	.438	4.4	111.8	5.2	132.1	6.2	157.5	36	.562	5.2	132.1	6.2	157.5	0.2 7.4	188.0
32	.469	4.4	111.8	5.2	132.1	6.2	157.5	36	.625	6.2	157.5	0.2 7.4	188.0	8.8	223.5

Table E-1—Guided-Bend Test Jig Dimensions (Continued)

Table E-1—Guided-Bend Test Jig Dimensions (Continued)

1	2		3		4		5	1	2		3		4		5
Outside	Wall			Dimer	nsion A			Outside	Wall			Dime	nsion A		
Dia.,	Thick.	LC30	-1812		5-2205			Dia.,	Thick.	LC30	-1812	LC65	5-2205		
in.	in.	LC30	-2242	LC65	5-2506	LC52	2-1200	in.	in.	LC30	-2242	LC65	5-2506	LC52	2-1200
D	t	in.	mm.	in.	mm.	in.	mm.	D	t	in.	mm.	in.	mm.	in.	mm.
36	.688	7.4	188.0	8.8	223.5	10.5	266.7	40	1.125	12.6	320.0	15.1	383.5	18.1	459.7
36	.750	7.4	188.0	8.8	223.5	10.5	266.7	40	1.188	12.6	320.0	15.1	383.5	21.7	551.2
36	.812	8.8	223.5	10.5	266.7	12.6	320.0	40	1.250	15.1	383.5	18.1	459.7	21.7	551.2
36	.875	8.8	223.5	10.5	266.7	12.6	320.0								
36	.938	10.5	266.7	12.6	320.0	15.1	383.5	42	.344	3.1	78.7	3.7	94.0	4.4	111.8
36	1.000	10.5	266.7	12.6	320.0	15.1	383.5	42	.375	3.1	78.7	3.7	94.0	4.4	111.8
36	1.062	12.6	320.0	15.1	383.5	18.1	459.7	42	.406	3.7	94.0	4.4	111.8	5.2	132.1
36	1.125	12.6	320.0	15.1	383.5	21.7	551.2	42	.438	3.7	94.0	4.4	111.8	5.2	132.1
36	1.188	15.1	383.5	18.1	459.7	21.7	551.2	42	.469	4.4	111.8	5.2	132.1	6.2	157.5
36	1.250	15.1	383.5	18.1	459.7	26.0	660.4	42	.500	4.4	111.8	5.2	132.1	6.2	157.5
								42	.562	5.2	132.1	6.2	157.5	7.4	188.0
38	.312	2.6	66.0	3.1	78.7	3.7	94.0	42	.625	6.2	157.5	7.4	188.0	8.8	223.5
38	.344	3.1	78.7	3.7	94.0	4.4	111.8	42	.688	6.2	157.5	7.4	188.0	8.8	223.5
38	.375	3.1	78.7	3.7	94.0	4.4	111.8	42	.750	7.4	188.0	8.8	223.5	10.5	266.7
38	.406	3.7	94.0	4.4	111.8	5.2	132.1	42	.812	7.4	188.0	10.5	266.7	10.5	266.7
38	.438	3.7	94.0	4.4	111.8	5.2	132.1	42	.875	8.8	223.5	10.5	266.7	12.6	320.0
38	.469	4.4	111.8	5.2	132.1	6.2	157.5	42	.938	10.5	266.7	12.6	320.0	15.1	383.5
38	.500	4.4	111.8	5.2	132.1	6.2	157.5	42	1.000	10.5	266.7	12.6	320.0	15.1	383.5
38	.562	5.2	132.1	6.2	157.5	7.4	188.0	42	1.062	10.5	266.7	12.6	320.0	18.1	459.7
38	.625	6.2	157.5	7.4	188.0	8.8	223.5	42	1.125	12.6	320.0	15.1	383.5	18.1	459.7
38	.688	6.2	157.5	7.4	188.0	8.8	223.5	42	1.188	12.6	320.0	15.1	383.5	18.1	459.7
38	.750	7.4	188.0	8.8	223.5	10.5	266.7	42	1.250	15.1	383.5	18.1	459.7	21.7	551.2
38	.812	8.8	223.5	10.5	266.7	12.6	320.0	14	244	2.1	70 7	27	04.0	4.4	111.0
38	.875	8.8	223.5	10.5	266.7	12.6	320.0		.344	3.1	78.7	3.7	94.0	4.4	111.8
38	.938	10.5	266.7	12.6	320.0	15.1	383.5		.375	3.1	78.7	3.7	94.0	4.4	111.8
38 38	1.000 1.062	10.5 12.6	266.7 320.0	12.6 15.1	320.0 383.5	15.1 18.1	383.5 459.7		.406 .438	3.7 3.7	94.0 94.0	4.4 4.4	111.8 111.8	5.2 5.2	132.1 132.1
38	1.125	12.6	320.0	15.1	383.5 383.5	18.1	459.7 459.7	44	.438 .469	3.7 4.4	94.0 111.8	4.4 5.2	132.1	5.2 6.2	152.1
38	1.125	12.6	320.0	13.1	385.5 459.7	21.7	439.7 551.2	44	.500	4.4 4.4	111.8	5.2 5.2	132.1	6.2	157.5
38	1.250	12.0	383.5	18.1	459.7	21.7	551.2 551.2	44	.562	5.2	132.1	6.2	152.1	0.2 7.4	188.0
50	1.250	15.1	505.5	10.1	чуу.т	21.7	551.2	44	.625	6.2	157.5	0.2 7.4	188.0	8.8	223.5
40	.312	2.6	66.0	3.1	78.7	3.7	94.0	44	.688	6.2	157.5	7.4	188.0	8.8	223.5
40	.344	3.1	78.7	3.7	94.0	4.4	111.8	44	.750	7.4	188.0	8.8	223.5	10.5	266.7
40	.375	3.1	78.7	3.7	94.0	4.4	111.8	44	.812	7.4	188.0	8.8	223.5	10.5	266.7
40	.406	3.7	94.0	4.4	111.8	5.2	132.1	44	.875	8.8	223.5	10.5	266.7	12.6	320.0
40	.438	3.7	94.0	4.4	111.8	5.2	132.1	44	.938	8.8	223.5	10.5	266.7	12.6	320.0
40	.469	4.4	111.8	5.2	132.1	6.2	157.5	44	1.000	10.5	266.7	12.6	320.0	15.1	408.9
40	.500	4.4	111.8	5.2	132.1	6.2	157.5	44	1.062	10.5	266.7	12.6	320.0	15.1	383.5
40	.562	5.2	132.1	6.2	157.5	7.4	188.0	44	1.188	12.6	320.0	15.1	383.5	18.1	459.7
40	.625	6.2	157.5	7.4	188.0	8.8	223.5	44	1.188	12.6	320.0	15.1	383.5	18.1	459.7
40	.688	6.2	157.5	7.4	188.0	8.8	223.5	44	1.250	15.1	383.5	18.1	459.7	21.7	551.2
40	.750	7.4	188.0	8.8	223.5	10.5	266.7								
40	.812	8.8	223.5	10.5	266.7	12.6	320.0	46	.344	3.1	78.7	3.7	94.0	4.4	111.8
40	.875	8.8	223.5	10.5	266.7	12.6	320.0	46	.375	3.1	78.7	3.7	94.0	4.4	111.8
40	.938	10.5	266.7	12.6	320.0	15.1	383.5	46	.406	3.7	94.0	4.4	111.8	5.2	132.1
40	1.000	10.5	266.7	12.6	320.0	15.1	383.5	46	.438	3.7	94.0	4.4	111.8	5.2	132.1
40	1.062	10.5	266.7	15.1	383.5	18.1	459.7	46	.469	4.4	111.8	5.2	132.1	6.2	157.5

64

1	2		3		4		5	1	2		3		4		5
Outside	Wall			Dimer	nsion A			Outside	Wall			Dimer	nsion A		
Dia., in.	Thick. in.)-1812)-2242		5-2205 5-2506	LC52	2-1200	Dia., in.	Thick. in.)-1812)-2242		5-2205 5-2506	LC52	2-1200
D	t	in.	mm.	in.	mm.	in.	mm.	D	t	in.	mm.	in.	mm.	in.	mm.
46	.500	4.4	111.8	5.2	132.1	6.2	157.5	52	1.125	10.5	266.7	12.6	320.0	18.1	459.7
46	.562	5.2	132.1	6.2	157.5	7.4	188.0	52	1.188	12.6	320.0	15.1	383.5	18.1	459.7
46	.625	6.2	157.5	7.4	188.0	8.8	223.5	52	1.250	12.6	320.0	15.1	383.5	18.1	459.7
46	.688	6.2	157.5	7.4	188.0	8.8	223.5								
46	.750	7.4	188.0	8.8	223.5	10.5	266.7	56	.375	3.1	78.7	3.7	94.0	4.4	111.8
46	.812	7.4	188.0	8.8	223.5	10.5	266.7	56	.406	3.7	94.0	4.4	111.8	5.2	132.1
46	.875	8.8	223.5	10.5	266.7	12.6	320.0	56	.438	3.7	94.0	4.4	111.8	5.2	132.1
46	.938	8.8	223.5	10.5	266.7	12.6	320.0	56	.469	4.4	111.8	5.2	132.1	6.2	157.5
46	1.000	10.5	266.7	12.6	320.0	15.1	383.5	56	.500	4.4	111.8	5.2	132.1	6.2	157.5
46	1.062	10.5	266.7	12.6	320.0	15.1	383.5	56	.562	5.2	132.1	6.2	157.5	7.4	188.0
46	1.125	12.6	320.0	15.1	383.0	18.1	459.7	56	.625	5.2	132.1	6.2	157.5	7.4	188.0
46	1.188	12.6	320.0	15.1	383.5	18.1	459.7	56	.688	6.2	157.5	7.4	188.0	8.8	223.5
46	1.250	12.6	320.0	18.1	459.7	21.7	551.2	56	.750	7.4	188.0	8.8	223.5	10.5	266.7
								56	.812	7.4	188.0	8.8	223.5	10.5	266.7
48	.344	3.1	78.7	3.7	94.0	4.4	111.8	56	.875	8.8	223.5	10.5	266.7	12.6	320.0
48	.375	3.1	78.7	3.7	94.0	4.4	111.8	56	.938	8.8	223.5	10.5	266.7	12.6	320.0
48	.406	3.7	94.0	4.4	111.8	5.2	132.1	56	1.000	10.5	266.7	12.6	320.0	15.1	383.5
48	.438	3.7	94.0	4.4	111.8	5.2	132.1	56	1.062	10.5	266.7	12.6	320.0	15.1	383.5
48	.469	4.4	111.8	5.2	132.1	6.2	157.5	56	1.125	10.5	266.7	12.6	320.0	15.1	383.5
48	.500	4.4	111.8	5.2	132.1	6.7	170.2	56	1.188	12.6	320.0	15.1	383.5	18.1	459.7
48	.562	5.2	132.1	6.2	157.5	7.4	188.0	56	1.250	12.6	320.0	15.1	383.5	18.1	459.7
48	.625	6.2	157.5	7.4	188.0	8.8	223.5								
48	.688	6.2	157.5	7.4	188.0	8.8	223.5	60	.375	3.1	78.7	3.7	94.0	4.4	111.8
48	.750	7.4	188.0	8.8	223.5	10.5	266.7	60	.406	3.7	94.0	4.4	111.8	5.2	132.1
48	.812	7.4	188.0	8.8	223.5	10.5	266.7	60	.438	3.7	94.0	4.4	111.8	5.2	132.1
48	.875	8.8	223.5	10.5	266.7	12.6	320.0	60	.469	4.4	111.8	5.2	132.1	5.2	132.1
48	.938	8.8	223.5	10.5	266.7	12.6	320.0	60	.500	4.4	111.8	5.2	132.1	6.2	157.5
48	1.000	10.5	266.7	12.6	320.0	15.1	383.5	60	.562	5.2	132.1	6.2	157.5	7.4	188.0
48	1.062	10.5	266.7	12.6	320.0	15.1	383.5	60	.625	5.2	132.1	6.2	157.5	7.4	188.0
48	1.125	12.6	320.0	15.1	383.5	18.1	459.7	60	.688	6.2	157.5	7.4	188.0	8.8	223.5
48	1.188	12.6	320.0	15.1	383.5	18.1	459.7	60	.750	7.4	188.0	8.8	223.5	8.8	223.5
48	1.250	12.6	320.0	15.1	383.5	21.7	551.2	60	.812	7.4	188.0	8.8	223.5	10.5	266.7
								60	.875	8.8	223.5	10.5	266.7	10.5	266.7
52	.375	3.1	78.7	3.7	94.0	4.4	111.8	60	.938	8.8	223.5	10.5	266.7	12.6	320.0
52	.406	3.7	94.0	4.4	111.8	5.2	132.1	60	1.000	8.8	223.5	10.5	266.7	12.6	320.0
52	.438	3.7	94.0	4.4	111.8	5.2	132.1	60	1.062	10.5	266.7	12.6	320.0	15.1	383.5
52	.469	4.4	111.8	5.2	132.1	6.2	157.5	60	1.125	10.5	266.7	12.6	320.0	15.1	383.5
52	.500	4.4	111.8	5.2	132.1	6.2	157.5	60	1.188	12.6	320.0	15.1	383.5	18.1	459.7
52	.562	5.2	132.1	6.2	157.5	7.4	188.0	60	1.250	12.6	320.0	15.1	383.5	18.1	459.7
52	.625	6.2	157.5	6.2	157.5	7.4	188.0								
52	.688	6.2	157.5	7.4	188.0	8.8	223.5	64	.375	3.1	78.7	3.7	94.0	4.4	111.8
52	.750	7.4	188.0	8.8	223.5	10.5	266.7	64	.406	3.7	94.0	4.4	111.8	5.2	132.1
52	.812	7.4	188.0	8.8	223.5	10.5	266.7	64	.438	3.7	94.0	4.4	111.8	5.2	132.1
52	.875	8.8	223.5	10.5	266.7	12.6	320.0	64	.469	4.4	111.8	5.2	132.1	5.2	132.1
52	.938	8.8	223.5	10.5	266.7	12.6	320.0	64	.500	4.4	111.8	5.2	132.1	6.2	157.5
52	1.000	10.5	266.7	12.6	320.0	15.1	383.5	64	.562	5.2	132.1	6.2	157.5	7.4	188.0
52	1.062	10.5	266.7	12.6	320.0	15.1	383.5	64	.625	5.2	132.1	6.2	157.5	7.4	188.0

Table E-1—Guided-Bend Test Jig Dimensions (Continued)

Table E-1—Guided-Bend Test Jig Dimensions (Continued)

1	2		3		4		5	1	2		3		4		5
Outside	Wall			Dimer	nsion A			Outside	Wall			Dimer	nsion A		
Dia.,	Thick.	LC30)-1812	LC65	5-2205			Dia.,	Thick.	LC30)-1812	LC65	5-2205		
in.	in.)-2242		5-2506	LC52	2-1200	in.	in.)-2242		5-2506	LC52	2-1200
D	t	in.	mm.	in.	mm.	in.	mm.	D	t	in.	mm.	in.	mm.	in.	mm.
64	.688	6.2	157.5	7.4	188.0	8.8	223.5	76	.938	8.8	223.5	10.5	266.7	12.6	320.0
64	.750	7.4	188.0	7.4	188.0	8.8	223.5	76	1.000	8.8	223.5	10.5	266.7	12.6	320.0
64	.812	7.4	188.0	8.8	223.5	10.5	266.7	76	1.062	10.5	266.7	12.6	320.0	15.1	383.5
64	.875	8.8	223.5	10.5	266.7	10.5	266.7	76	1.125	10.5	266.7	12.6	320.0	15.1	383.5
64	.938	8.8	223.5	10.5	266.7	12.6	320.0	76	1.188	10.5	266.7	12.6	320.0	15.1	383.5
64	1.000	8.8	223.5	10.5	266.7	12.6	320.0	76	1.250	12.6	320.0	15.1	383.5	18.1	459.7
64	1.062	10.5	266.7	12.6	320.0	15.1	383.5								
64	1.125	10.5	266.7	12.6	320.0	15.1	383.5	80	.562	5.2	132.1	6.2	157.5	6.6	167.6
64	1.188	12.6	320.0	15.1	383.5	18.1	459.7	80	.625	5.2	132.1	6.2	157.5	7.4	188.0
64	1.250	12.6	320.0	15.1	383.5	18.1	459.7	80	.688	6.2	157.5	7.4	188.0	8.8	223.5
								80	.750	6.2	157.5	7.4	188.0	8.8	223.5
68	.469	4.4	111.8	4.4	111.8	5.2	132.1	80	.812	7.4	188.0	8.8	223.5	10.5	266.7
68	.500	4.4	111.8	5.2	132.1	6.2	157.5	80	.875	7.4	188.0	8.8	223.5	10.5	266.7
68	.562	5.2	132.1	6.2	157.5	7.4	188.0	80	.938	8.8	223.5	10.5	266.7	12.6	320.0
68	.625	5.2	132.1	6.2	157.5	7.4	188.0	80	1.000	8.8	223.5	10.5	266.7	12.6	320.0
68	.688	6.2	157.5	7.4	188.0	8.8	223.5	80	1.062	10.5	266.7	12.6	320.0	12.6	320.0
68	.750	6.2	157.5	7.4	188.0	8.8	223.5	80	1.125	10.5	266.7	12.6	320.0	15.1	383.5
68	.812	7.4	188.0	8.8	223.5	10.5	266.7	80	1.188	10.5	266.7	12.6	320.0	15.1	383.5
68	.875	7.4	188.0	8.8	223.5	10.5	266.7	80	1.250	12.6	320.0	15.1	383.5	18.1	459.7
68	.938	8.8	223.5	10.5	266.7	12.6	320.0								
68	1.000	8.8	223.5	10.5	266.7	12.6	320.0								
68	1.062	10.5	266.7	12.6	320.0	15.1	383.5								
68	1.125	10.5	266.7	12.6	320.0	15.1	383.5								
68	1.188	10.5	266.7	12.6	320.0	15.1	383.5								
68	1.250	12.6	320.0	15.1	383.5	18.1	459.7								
70	500		111.0	5.0	100.1	()	157.5								
72	.500	4.4	111.8	5.2	132.1	6.2	157.5								
72	.562	5.2	132.1	6.2	157.5	6.2	157.5								
72	.625	5.2	132.1	6.2	157.5	7.4	188.0								
72	.688	6.2	157.5	7.4	188.0	8.8	223.5								
72	.750	6.2	157.5	7.4	188.0	8.8	223.5								
72 72	.812	7.4	188.0	8.8	223.5	10.5	266.7								
72 72	.875	7.4	188.0	8.8	223.5	10.5	266.7								
72	.938	8.8	223.5	10.5	266.7	12.6	320.0								
72 72	1.000	8.8	223.5	10.5	266.7	12.6	320.0								
72 72	1.062	10.5	266.7	12.6	320.0	15.1	383.5								
72 72	1.125	10.5	266.7	12.6	320.0	15.1	383.5								
72 72	1.188 1.250	10.5 12.6	266.7 320.0	12.6 15.1	320.0 383.5	15.1 18.1	383.5 459.7								
12	1.230	12.0	320.0	15.1	363.5	10.1	439.7								
76	.500	4.4	111.8	5.2	132.1	6.2	157.5								
76	.562	5.2	132.1	6.2	157.5	6.2	157.5								
76	.625	5.2	132.1	6.2	157.5	7.4	188.0								
76	.688	6.2	157.5	7.4	188.0	8.8	223.5								
76	.750	6.2	157.5	7.4	188.0	8.8	223.5								
76	.812	7.4	188.0	8.8	223.5	10.5	266.7								
76	.875	7.4	188.0	8.8	223.5	10.5	266.7								

APPENDIX F—PURCHASER INSPECTION

F.1 Inspection Notice

Where the inspector representing the purchaser desires to inspect this pipe or witness these tests, reasonable notice shall be given of the time at which the run is to be made.

F.2 Plant Access

The inspector representing the purchaser shall have unrestricted access at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which will concern the manufacture of the pipe ordered. The manufacturer shall afford the inspector all reasonable facilities to satisfy him that the pipe is being manufactured in accordance with this specification. All inspections should be made at the place of manufacture prior to shipment, unless otherwise specified on the purchase order, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

F.3 Compliance

The manufacturer is responsible for complying with all of the provisions of this specification. The purchaser may make any investigation necessary to satisfy himself of compliance by the manufacturer, and may reject any material that does not comply with this specification.

F.4 Rejection

Unless otherwise provided, material which shows defects upon inspection or subsequent to acceptance at the manufacturer's works, or which proves defective when properly applied in service, may be rejected, and the manufacturer so notified. If tests that require the destruction of material are made, any product which is proven not to have met the requirements of the specification shall be rejected. Disposition of rejected product shall be a matter of agreement between the manufacturer and the purchaser.

APPENDIX G—USE OF API MONOGRAM POLICY AND PROCEDURES

G.1 Board Resolution

The original resolutions adopted by the Board of Directors of the American Petroleum Institute on October 20, 1924, embodied the purpose and conditions under which such official monogram may he used. A restatement of the resolutions was adopted by the Board of Directors on November 14, 1977, and is reproduced herein as Exhibit A.

G.2 API Monogram

The API monogram $\langle p \rangle$ is a registered trademark/servicemark of the American Petroleum Institute. Authorization to use the monogram is granted by the Institute to qualified licensees for use as a warranty that they have obtained a valid license to use the monogram and that each individual item which bears the monogram conformed, in every detail, with the API Specification applicable at the time of manufacture. However, the American Petroleum Institute does not represent, warrant or guarantee that products bearing the API monogram do in fact conform to the applicable API Specification. Such authorization does not include use of the monogram on letterheads or in advertising without the express statement of fact describing the scope of licensee's authorization, and further does not include use of the monogram, the name AMERICAN PETROLEUM INSTITUTE or the description "API" in any advertising, or otherwise to indicate API approval or endorsement of products.

The formulation and publication of API Specifications and the API monogram program is not intended in any way to inhibit the purchase of products from companies not licensed to use the API monogram.

G.3 Application for Authority to Use Monogram

Manufacturers desiring to mark their products with the monogram may apply for a license to use the monogram. Manufacturer's Application Form and API License Agreement are shown in the *Composite List of Manufacturers Licensed for Use of the API Monogram.*

Separate applications shall be made for each facility at which the manufacturer desires to apply the monogram and for each API Specification, or part thereof, under which authorization is desired to monogram products at that facility,

G.4 Authorization to Use the Monogram

Applicants shall have an approved quality program functioning in conformance with the latest edition of API Spec Q1 and with specific requirements of the applicable API Specification at any particular facility prior to being issued a license to use the API monogram at that facility.

A decision to award or withhold monogram rights will be made by the staff of the Institute subsequent to a survey of the applicant's facilities located at the facility where the monogram is to be applied. The decision will be based upon the extent to which the objective evidence collected during the survey substantiate the manufacturer's conformance to his quality program, as described in his Quality Manual which shall meet the requirements of the appropriate API specifications, including the latest edition of API Spec Q1.

Each facility where the monogram is to be applied will be judged separately. If approved, a separate license will be granted at that facility. These licenses shall not be assignable or transferable by the Licensee in any manner nor shall Licensee have the right to grant sub-licenses. The application of the monogram may not be subcontracted.

Each authorization shall be effective for a period of three years subject to cancellation for cause.

G.5 Application of the Monogram to the Product

a. The monogram may be applied at any time appropriate to the manufacturing process.

b. Only an API licensee may apply his monogram.

c. The monogram shall be applied at the licensed facility.

d. A marking procedure specified by the applicable API Specification shall be used to apply the monogram and the date of manufacture.

G.6 Fee for Use of Monogram

The fees assessed are to defray the cost of administering the Monogram Program.

G.6.1 INITIAL AUTHORIZATION FEE

The applicant will be assessed an initial authorization fee for the first Specification included in the application, and a separate fee for each additional Specification included in the application.

G.6.2 ANNUAL RENEWAL FEE

In addition to the initial authorization fee, licensees will be assessed an annual renewal fee for each specification under which he is authorized to use the monogram. First-time applicants issued monogram certificates dated November 1 through December 31 shall not be required to pay a renewal fee for the following year.

G.7 Surveys G.7.1 INITIAL AND RENEWAL SURVEYS

First-time applicants and licensees on every third year renewal of license shall be surveyed by API surveyors. The parameters of these surveys shall be appropriate API specifications and the manufacturer's quality manual. The surveys will be performed to gather objective evidence for API's use in verifying that the manufacturer is in conformance with the provisions of the manufacturer's Quality Program as applicable to the API specifications. The manufacturer will be invoiced for the cost of these surveys.

G.7.2 PERIODIC SURVEYS

Existing licensees will be periodically surveyed by an API surveyor to determine whether or not they continue to qualify for authorization to use the monogram. The frequency of the periodic surveys will be at the discretion of the staff of the Institute. Costs of periodic surveys will be paid by the Institute.

G.8 Cancellation of Monogram Rights

The right to use the monogram is subject to cancellation for the following causes:

a. Applying the monogram on any product that does not meet the Specification.

b. Failure to maintain reference master gages when required by the Specifications.

c. Failure to meet the requirements of a survey.

d. Failure to pay the annual renewal fee for use of the monogram.

e. For any other reason satisfactory to the API staff.

G.9 Reinstatement of Monogram Rights

Manufacturers whose authorization to use the monogram has been cancelled may request reinstatement at any time. If a request for reinstatement is made within sixty (60) days after cancellation, and if the reason for cancellation has been corrected, no new application is necessary. A resurvey of the manufacturer's facilities will be made by an API surveyor prior to a decision to reinstate monogram rights. The manufacturer will be invoiced for this resurvey regardless of the Institute's decision on reinstatement. If the result of the resurvey indicates to the API staff that the manufacturer is qualified, the license will be reissued.

Request for reinstatement made more than sixty (60) days after cancellation shall be treated as a new application unless circumstances dictate an extension of this time period as agreed upon by the API staff.

G.10 Appeals

An interested party may appeal a decision by the Institute to withhold monogram rights. Appeals shall be directed to the director, API Industry Services Department and handled by the General Committee with a further right of appeal to the API Management Committee. Competing suppliers or manufacturers of the product or service to which the standard applies or might apply may not be involved in appeals. The General Committee and the Management Committee may convene appeals boards to hear and act on appeals. See Exhibit C of API Bulletin S1.

G.11 Users Responsibilities

The effectiveness of the API standardization program can be enhanced by users reporting problems encountered with API monogrammed products to the Institute. API solicits information on both new product nonconformance with API requirements and field failures (or malfunctions) which are judged to be caused by either specification deficiencies or nonconformance with API requirements.

G.12 Special API Records

The API staff shall maintain and publish a current list of manufacturers licensed to use the API monogram for each API Specification. The document titled *Composite List of Manufacturers Licensed for Use of the API Monogram* shall be updated at least once a year, and a copy shall be mailed to each licensed facility as soon as practical after receipt from the printer. Copies shall be made available to the public at the same time.

The API staff shall also maintain records of reported problems encountered with API-monogrammed products. These records will be used internally only by API in evaluation of the quality program and API specifications and will be held in confidence.

G.13 Marking Instructions for API Licensees

G.13.1 MARKING—GENERAL

The following marking requirements apply to licensed manufacturers using the API monogram on products covered by this specification.

Pipe and pipe couplings, manufactured in conformance with this specification, may be marked by the licensee as specified hereinafter, or as specified in Section 13. Products to which the monogram is applied shall be marked as specified in Appendix G.

a. The required marking on pipe shall be as stipulated in G.3. b. Size, weight per foot, length, and hydrostatic test pressure markings shall be in US Customary units except that for pipe intended for use in countries utilizing the metric system: these markings shall be in metric units or both US Customary and metric units, if so specified on the purchase order. If not so specified, for pipe made and intended for use in countries utilizing the metric system, these markings may be given in metric units only, at the option of the manufacturer.

G.13.2 LOCATION OF MARKINGS

The location and sequence of identification markings shall be as follows:

a. 1.900 in. OD and smaller—Die stamped on a metal tag fixed to the bundle, or may be printed on the straps or banding clips used to tie the bundle.

b. Seamless pipe in all other sizes and welded up to 16 in. OD—Paint stencil on the outside surface starting at a point between 18 and 30 inches from the end of the pipe, and in the sequence shown below, except when agreed between the purchaser and the manufacturer that some or all of the markings may be placed on the inside surface in a sequence convenient to the manufacturer.

c. Welded pipe 16-in. OD and larger—Paint stencil on the inside surface starting at a point no less than 6 in. from the end of the pipe in a sequence convenient to the manufacturer, unless otherwise specified by the purchaser.

G.13.3 SEQUENCE OF MARKINGS

The sequence of identification markings shall be as follows:

a. Manufacturer's API License Number. (The manufacturer's name or mark is optional.) The manufacturer's API license number shall be die stamped or paint-stenciled, at the option of the manufacturer. \triangle

b. API Monogram (1) and Date. The API monogram (1) immediately followed by the date of manufacture (defined as the month and year in which the monogram is applied), shall be applied only to products complying with the requirements of the specification and only by authorized manufacturers.

c. Sizes. The outside diameter in inches followed by the nominal wall thickness in inches.

d. Weight per Foot

For sizes $4^{1/2}$ in. and larger, the tabulated weight in pounds per foot for plain-end pipe (Table 8) shall be paint-stenciled. e. Grade. The symbols to be used are as follows:

orade. The symbols to be	abea are as follows.
Grade LC30-1812	LC30-1812
Grade LC52-1200	LC52-1200
Grade LC65-2205	LC65-2205
Grade LC65-2506	LC65-2506
Grade LC30-2242	LC30-2242

The symbols to use from grades not listed in Table 4 shall correspond to the designation described in footnote a to Table 4.

f. Process of Manufacture. The symbols to be used are as follows:

Seamless pipe	S
Welded pipe	E
Centrifugal Cast pipe	С
g. Heat Treatment. The symb	ols to be used are as follows:
As-rolled	AR
Ouench and Tempered	HQ

1 Ib Toned	
Quench and Tempered	HQ
Solution Anneal	Н

h. Test Pressure. When the specified hydrostatic test pressure is higher than the tabulated pressure (Table 8), the test pressure in pounds per square inch, preceded by the word TESTED, shall be paint-stenciled.

i. Supplementary Requirements

Example:

14 inch NPS 0.375 inch wall thickness, Grade LC30-1812, solution-annealed seamless shall be paint-stenciled as follows:

Note: The weight per foot (55.50) is determined by applying the F factor, F = 1.017, to 54.57 from Table 8.

G.13.4 LENGTH

In addition to the identification markings stipulated in G.1 and G.2, the length shall be marked as follows:

a. For pipe in sizes larger than 1.900-in. OD, the length in feet and tenths of a foot, unless otherwise specified on the purchase order, as measured on the finished pipe shall be paint-stenciled on the outside surface at a place convenient to the manufacturer, except by agreement between the purchaser and the manufacturer that the length marking may be placed inside the pipe at a convenient location.

b. For sizes 1.900-in. OD and smaller, the total length of pipe in the bundle in feet and tenths of a foot, unless otherwise specified on the purchase order, shall be marked on the tag, band, or clip.

G.13.5 DIE STAMPING

Cold die stamping of all grades of plate or pipe not subsequently heat-treated, and all pipe with wall thickness of 0.156 in. and less is prohibited, except that by agreement between the purchaser and the manufacturer and when so specified on the purchase order, pipe or plate may be cold die stamped. The manufacturer at his option may hot die stamp (200°F [93°C] or higher) plate or pipe, cold die stamp plate or pipe if it is subsequently heat-treated. Cold die stamping shall be done with rounded or blunt dies. All die stamping shall be at least 1 in. (25 mm) from the weld for all grades. Etching or marking with a vibrograph are permitted in lieu of cold die stamping.

G.13.6 PIPE PROCESSOR MARKINGS

Pipe heat-treated by a processor other than the original pipe manufacturer shall be marked as stipulated in G.1, G.2, G.3, and G.4. The processor shall remove any identity which is not indicative of the new condition of the product as a result of heat-treating (i.e., prior grade identity, original pipe manufacturer's name or logo).

EXHIBIT A BOARD RESOLUTION

The original resolutions adopted by the Board of Directors of the American Petroleum Institute on Oct. 20, 1924. embodied the purpose and conditions under which such official monogram may be used.

The following restatement of the resolutions was adopted by the Board of Directors on November 14, 1977:

WHEREAS, The Board of Directors of the American Petroleum Institute has caused a review of the Institute's program for licensing the use of the API monogram and

WHEREAS, It now appears desirable to restate and clarify such licensing policy and to confirm and make explicitly clear that it is the licensees, not API, who make the representation and warranty that the equipment or material on which they have affixed the API monogram meets the applicable standards and specifications prescribed by the Institute;

NOW, THEREFORE, BE IT RESOLVED, That the purpose of the voluntary Standardization Program and the Monogram Program of the American Petroleum Institute is to establish a procedure by which purchasers of petroleum equipment and material may identify such equipment and materials as are represented and warranted by the manufacturers thereof to conform to applicable standards and specifications of the American Petroleum Institute; and be it further

RESOLVED, That the previous action under which the following monogram was adopted as the official monogram of the American Petroleum Institute is reaffirmed;

BE IT FURTHER RESOLVED, That the American Petroleum Institute's monogram and standardization programs have been beneficial to the general public as well as the petroleum industry and should be continued and the Secretary is hereby authorized to license the use of the monogram to anyone desiring to do so under such terms and conditions as may be authorized by the Board of Directors of the American Petroleum Institute, provided that the licensee shall agree that the use of the monogram by such licensee shall constitute the licensee's representation and warranty that equipment and materials bearing such monogram complies with the applicable standards and specifications of the American Petroleum Institute and that licensee shall affix the monogram in the following manner:

BE IT FURTHER RESOLVED, That the words "Official Publication" shall be incorporated with said monogram on all such standards and specifications that may hereafter be adopted and published by the American Petroleum Institute, as follows:

OFFICIAL PUBLICATION

REG. U.S. PATENT OFFICE

API Related Publications Order Form

Date:			
	(Month,	Day.	Year)

 API Member (Check if Yes)

Invoice To	– 🗅 Check here if sam	e as "Ship To"	Ship To – (UPS will not deliver to a P.O. Box)							
Company:			Company:							
Name/Dept.:			Name/Dept.:							
Address:			Address:							
City:		State/Province:	City:		State/Province:					
Zip:		Country:	Zip:		Country:					
Customer Dayti	ime Telephone No.:		Customer Daytime Telephone 1	No.:						
Fax No.:			Fax No.:							
			(Essential for Foreign Orders)							
-	nt Enclosed \$ nt By Charge Acc	ount	Please Bill Me P.0. No.:							
□ Paymen □ MasterC		Visa 🗆 American Express	Customer Account No.:							
Account No.:			State Sales Tax – The American Petroleum Institute is required to collect sales tax on publications							
Name (As It Ap	pears on Card):		mailed to the following states: AL, AR, CT, DC, FL, GA, IL, IN, IA, KS, KY, ME, MD, MA, MI, MN, MO, NE, NJ, NY, NC, ND, OH, PA, RI, SC, TN, TX, VT, VA, WV, and WI. Prepayment of orders shipped to these states should include applicable sales tax unless a purchaser is exempt. If exempt, please print your state exemption number and							
Expiration Date	2:	enclose a copy of the current exemption			state exemption number and					
Signature:			Exemption Number:		<u>S</u>	tate:				
Quantity	Order Number	Title		S0*	Unit Price	Total				
	G05L41	Spec 5L, <i>Line P</i>	ipe		\$ 115.00					
	G05L15	RP 5L1, Railroad Transporta	tion of Line Pipe		\$ 45.00					
	G02700	RP 5L2, Internal Coating of Line Pipe for Non-C	Corrosive Gas Transmission Service		\$ 45.00					
	G05L33	RP 5L3, Conducting Drop-Weight T	ear Tests on Line Pipe		\$ 45.00					
	G02906	5L7, Unprimed Internal Fusion Bonded	Epoxy Coating of Line Pipe		\$ 50.00					
	G05L82	RP 5L8, Field Inspection of	New Line Pipe		\$ 75.00					
	G05LD2	Spec 5LD, Specification for CRA CI	ad or Lined Steel Pipe		\$ 70.00					
	G05LW2	RP 5LW, Transportation of Line Pipe on	Barges and Marine Vessels		\$ 45.00					
	G05T10	Std 5T1, Imperfection 7	erminology		\$ 65.00					
		orders are shipped via UPS or First Class Mail in th			Subtotal					
shipping costs.	All other countries, for Ai	by Airmail. U.S. and Canada, \$5 per order handling rmail (standard service) add 25% of order value. Al		ite Sa	les Tax (see above)					
	ay, add an additional 10% pipg Charge – Fed	5 of order value. Ex, \$10 in addition to customer providing FedEx a	Rush S	hippin	g Charge (see left)					
	ping undige - rea		costs (1-9 items). Shippin							

_. UPS Next Day, \$10 plus the actual shipping costs (1-9 items). UPS Second Day, add \$10 plus the actual shipping costs (1-9 items).

Rush Bulk Orders - 1-9 items, \$10. Over 9 items, add \$1 each for every additional item. NOTE: Shipping on foreign orders cannot be rushed without FedEx account number.

*To be placed on Standing Order for future editions of this publication, place a check mark in the space provided. Pricing and availability subject to change without notice.

Mail Orders: American Petroleum Institute, Order Desk, 1220 L Street, N.W., Washington, DC 20005-4070 Fax Orders: (202) 962-4776

To better serve you, please refer to this code when ordering:

Phone Orders: (202) 682-8375 G M 4 3 7 2 0 6 9 8

Total (in U.S. Dollars)

The American Petroleum Institute provides additional resources and programs to industry which are based on API Standards. For more information, contact:

Seminars and Workshops	Ph: Fax:	202-682-8187 202-682-8222
Inspector Certification Programs	Ph: Fax:	202-682-8161 202-962-4739
 American Petroleum Institute Quality Registrar 	Ph: Fax:	202-962-4791 202-682-8070
Monogram Licensing Program	Ph: Fax:	202-962-4791 202-682-8070
 Engine Oil Licensing and Certification System 	Ph: Fax:	202-682-8233 202-962-4739
Petroleum Test Laboratory Accreditation Program		202-682-8064 202-962-4739
Training Programs		202-682-8490 202-682-8222

In addition, petroleum industry technical, patent, and business information is available online through API EnCompass[™]. Call 212-366-4040 or fax 212-366-4298 to discover more.

To obtain a free copy of the API Publications, Programs, and Services Catalog, call 202-682-8375 or fax your request to 202-962-4776. Or see the online interactive version of the catalog on our World Wide Web site – http://www.api.org.

Helping You Get The Job Done Right.™

Additional copies available from API Publications and Distribution: (202) 682-8375

Information about API Publications, Programs and Services is available on the World Wide Web at: http://www.api.org

1220 L Street, Northwest Washington, D.C. 20005-4070 202-682-8000